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Requirements for the Degree of Doctor of Philosophy

TESTS FOR CORRELATION AND PARTIAL CORRELATION
BASED ON KENDALL'S TAU

BY

BASIL SAMARA

August, 1985

Chairman: Or. Ronald Randles
Major Department: Statistics

This study investigates properties of tests based on Pearson's

correlation coefficient and Kendall's tau, the two most widely used

measures of correlation. The main problem of interest is the partial

correlation problem where the variables Y and Z are related through

another variable, the covariate X. In this work each of Y and Z is

related to X through the models

Y = + 6^X + E

and

Z = + ^
2̂

+ E

The hypotheses of interest are

I

1) H^: £ and E are independent,

and

2) H^: T = 0 ,

where f is Kendall's correlation coefficient between E and E*.

Vi



For the first hypothesis, Kendall's tau calculated on the

residuals from estimates of the above models, is proposed. The

properties of this statistic and its asymptotic efficiency relative

to the Pearson partial correlation coefficient are discussed. Also,

the simulated distribution of this statistic under the null

hypothesis of independence is tabulated.

The null hypothesis t = 0 is first investigated under the

ordinary correlation setting between Y and Z, i.e., in the absence of

the covariate term X. Here, a test is proposed based on the usual

Kendall's tau but standardized by a variance estimator which has

better properties than the estimators discussed in the literature.

The simulated null distribution of this statistic is also given.

For the partial correlation formulation using a null hypothesis

T = 0, a statistic is proposed which is similar to one studied for

the ordinary correlation problem except that it is applied to the

residuals from the fitted model. The simulated null distributions of

this statistic generated from residuals obtained by the least squares

model estimates and by least absolute regression, respectively, are

also tabulated.

Results of a Monte Carlo study investigating the performances of

the above statistics indicate that

(i) for hypotheses of independence, tests based on Pearson's

statistics are highly robust in both the ordinary correlation,

and the partial correlation settings, and that

(ii) in both settings, the tests based on our proposed modifications

of Kendall's tau perform the best overall for the hypothesis

that T = 0 .



CHAPTER ONE

INTRODUCTION

Let (X,Y,Z) denote a random variable from some absolutely

continuous trivariate distribution with distribution function F, and

consider testing the null hypothesis that Y and Z are independent. If

this hypothesis is rejected, one tends to believe that the variables Y

and Z are dependent. However, it is possible that this "dependence"

between Y and Z is due to the effect of another variable X to which

both Y and Z are related in some fashion. If, for example, Y is a

variable measuring mathematical ability and Z is a variable measuring

musical ability, then a significant correlation between Y and Z is

perhaps due to the correlation of each of Y and Z with another

variable X which measures intelligence. If one suspects that such a

relationship exists, then a more appropriate test may be what is

commonly known as the test for partial correlation, where the null

hypothesis is given by

HqI Y and Z are independent

( 1 . 1 )

conditional on X being held constant.

That is to say, one "partials out" the effect of the variable X while

testing the independence between Y and Z.

1
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Although, in general, almost any relational structure between Y

and X and between Z and X is possible; we use linear models as the

underlying structure relating these variables. That is, we let

Y = + B^X + E

and (1.2)

1 = 0^+ $
2
^ + E‘ ,

where the regression parameters 02 , and ^2 unknown

constants, and the random variable X is independent of both variables

E and E'. Our choice of the linear structure was dictated by the fact

that the normal theory procedures discussed in our work assume such a

structure. For example, the use of Pearson's partial correlation

coefficient (to be discussed later) is inappropriate unless both Y and

Z have linear regressions on X (see, for example, Quade, 1974, p. 376

and Korn, 1984, p. 62). Under the linear models given in (1.2), the

hypothesis of (1.1) is equivalent to

Hq: E and E' are independent . (1.3)

The most popular test of partial correlation is that based on

Pearson's partial correlation coefficient commonly denoted by Ry^
x

and given by

'YX.X

Ryz -
‘^YX'^ZX

{[l-RyxlCl-R^X^^

^/2

(1.4)
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where Ryz» usual product moment correlation

coefficients between Y and Z, Y and X, and Z and X, respectively.

That is, if (Xj^.Y^.Z]^), . . . , (Xf,,Y^,Z^) denotes a random sample of

size n from F, then, for example,

j (Yj-Y)(Zj-Z)

D s T
t\yjy

.

n n 1/2

( I (Y,-Y)2 I (Z -Z)2}

i=l ^ i=l
^

The intuitive appeal of the statistic Ry^
x arises from the fact that

Ryz.x nothing but the usual product moment correlation coefficient

(Pearson's R) calculated from the residuals of the ordinary least

squares fit of the linear models given in (1.2). However, a

disadvantage of using tests based on f^YZ.X* which henceforth we shall

denote by R^,, is that they all assume that either E|e' or e'|E is

normally distributed. These tests may be nonrobust without this

assumption, an issue to be investigated in this work.

Another measure for partial correlation, albeit not as popular,

is the nonparametric Kendall's partial correlation coefficient given

by

^YZ.X
~^YZ

'
'^YX'^ZX

{[i-tyx]l1“Tzx3}

(1.5)

where Xy^, Xy^^ and x^^ are the usual Kendall's correlation

coefficients (Kendall's tau) calculated on the variables Y and Z, Y
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and X, and Z and X, respectively. That is, for example.

where

f

1 if t > 0

Sgn{t} = <0 if t = 0 . ( 1 . 6 )

-1 if t < 0

Kendall (1962) obtained the statistic 'yz.X’ ^^so as Kendall's

partial tau, as follows. For a fixed ranking of the variable X, he

chose two random rankings of the variables Y and Z. For all possible

(2) pairs (X^- ,Y^- ,Z^- ) and (Xj,Yj,Zj), is^j, he constructed a 2x2

contingency table in which one category contained the freqencies of

agreement (disagreement) of the Y pairs with the X pairs, and the

other category contained those of the Z pairs with the X pairs. From

this table, Kendall calculated the measure of association commonly

known as Kendall's tau~b. Writing the appropriate frequencies in

terms of Ty^, Xy^^ and he then obtained the partial tau statistic

given in (1.5). We have briefly described Kendall's method of

obtaining the statistic fy^^x stress an important fact and that is

that Tyz.x is not the usual Kendall's tau calculated on the residuals

obtained from the linear models (1.2), and that, although ty^
^

has

the same mathematical structure as Ry^.x* is merely a coincidence.

The lack of popularity of Kendall's partial tau stems from the

fact that it has many limitations which are primarily due to its
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theoretically complex structure. It is not distribution-free, for

example, and in fact, it is not even asymptotically distribution-free

(its asymptotic variance depends on the underlying distribution of the

variable (X,Y,Z)). Magsoodloo (1975) and Magsoodloo and Pallos (1981)

have tabulated quantile estimates of a null distribution for x

based on Monte Carlo simulations for a variety of sample sizes. We

believe that these quantile estimates are inappropriate for testing

conditional independence since they were generated under the

hypothesis of "total independence," that is under the assumption that

the three variables X, Y and Z are mutually independent. In some

preliminary Monte Carlo studies, we used these quantile estimates

under the underlying model structure (1.2). As we had expected, the

empirical sizes of such tests were highly inflated under the less

restrictive hypothesis of conditional independence. For example, for

each of 10,000 samples of size n=20 each we have calculated ty^
x

the variables X, Y=X+E and Z=X+E‘, where the mutually independent

standard normal variables X, E and £' were generated by IMSL

subroutines. For a nominal a=0.05, each of the 10,000 statistics was

compared to the 95^*^ percentile estimates given by Magsoodloo and

Pallos (1981). The relative frequency of rejection was found to be

0.138, which indicates that Magsoodloo and Pallos's procedures do not

hold their significance levels well under a conditional independence

model

.

To test the hypothesis of independence of E and E' of (1.2), we

propose using Kendall's tau calculated on the residuals. If ay 02 »

A A

and S 2
denote estimates of the regression constants ay ay
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and respectively, the residuals are

U. = Y. - a, - 6,X.
1 1 1 1 1

and (1.7)

A A

V = "
“2

”
®2^i

’ i=1.2,...,n ,

and the test statistic is given by

T
n ^ I Sgn{(U -U.)(V -V )} .

(2) i<j
1 J 1 J

( 1 . 8 )

with Sgn(t) is as defined in (1.6).

The idea of using Kendall's tau calculated from residuals was

considered by Shirahata (1977). In his brief paper, Shirahata tried

to show that the difference between a standardized and a

standardized converges to zero in probability, where is the

usual Kendall's statistic calculated on the variables E and £'. His

method of argument is to show via Monte Carlo simulation that, for

large n, the correlation between and becomes large while the

sample mean of 12(T^-Sj^)^/{2n(n-l) (2n+5) }
^^^2 becomes small. From

these considerations he concludes that the approximation of to

is satisfactory for large n. Randles (1984) also considers applying

Kendall's tau to residuals; however, his discussion assumes the X^-'s

of (1.2) to be known constants rather than random variables as they

are considered to be here.

In our study, we compare the performances of tests based on T to
n

those based on the Pearson's partial correlation coefficient R . The
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statistic Ty2
x

included in this study because of the many

previously discussed disadvantages associated with it. There are many

advantages to using T^. For example, is asymptotically

distribution-free under the model (1.2) and the hypothesis of

conditional independence. Further, has many desirable properties

regardless of the type of regression parameter estimators used. Also,

calculations of asymptotic relative efficiencies (AREs) indicate that,

for heavy-tailed distributions and for large n, tests based on have

higher relative efficiencies than those based on These properties

will be discussed in detail in chapters 2 and 3. In chapter 2, we

discuss the distributional properties of our statistic T^ under the

hypothesis of conditional independence, and tabulate the simulated

null distribution of T^ when X, E and E' have normal distributions.

In chapter 3, we derive an expression for the asymptotic efficiency of

T^ relative to Rp [ARE(Tp,Rp)], where the class of alternatives of

dependence between E and E' is given by the "tri variate reduction"

model

E = W. + A W.
1 n 3

and (1.9)

E' . Wj + Vs •

where W^, W2 and W3 are absolutely continuous and mutually independent

random variables and Ap is a constant.

In chapter 4, we temporarily turn our attention from the partial

correlation problem to a different, yet closely related problem: that
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of ordinary correlation. Here, the problem of interest is to study

the association between the variables Y and Z based on a random sample

of pairs .... (Yp.Zp) from some bivariate continuous

distribution F. This problem is commonly known as the test for

independence since the available testing procedures based on

statistics such as Hoeffding's D, Pearson's R, Spearman's rho and

Kendall's tau all test the null hypothesis of independence,

Hq: Y and Z are independent .

Although the hypothesis of independence implies many desirable and

convenient theoretical properties, it is our view that, despite its

intuitive appeal, such a hypothesis is not broad enough to encompass

all situations when no association exists between the variables Y and

Z. Suppose, for example, that the pair (Y,Z) has a spherically

symmetric distribution with contours of the form given in figure 1.1

(see, for example, Johnson and Ramberg, 1977).

Z

Figure 1.1 Contours of a spherically symmetric distribution
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Although Y and Z may be statistically dependent in such cases, they

are clearly uncorrelated by all usual definitions of correlation.

Moreover, larger values of Y are not associated with larger (or

smaller) values of Z, etc. It is situations such as these, when there

is no correlation between Y and Z, that we like to include in the null

hypothesis. Indeed, some prominent textbooks state their null

hypothesis as ^=0, but they calculate the null distribution under

independence, not just ^=0, where

= p{(Y^-Y2)(Z^-Z2)>0} - p{(Y^-Y2)(Z^-Z2)<0}

= Probability of concordance

- probability of discordance.

( 1 . 10 )

It is our contention that the experimenter often only wishes to

detect useful relationships between Y and Z where Y, for example, is

useful as a predictor of Z or where, for example, larger Y-values are

associated with larger (or smaller) Z-values, etc. Correlation

coefficients such as attempt to measure these useful relationships.

Of the tests mentioned earlier, Hoeffding's D (see, for example,

Hollander and Wolfe, 1973), which is consistent against all types of

dependence, is not used as often as Pearson's R or Kendall's tau.

This is partly because it is more difficult to compute and interpret,

and partly due to its ability to detect all departures from

independence, which makes it less powerful at detecting correlated

departures. In addition to the fact that the respective consistency
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classes of the tests based on Pearson's R and Kendall's tau are given

by p^O and ij^O, our interest in detecting such alternatives derives

from the fact that it is these alternatives that allow us to conclude

useful relationships between Y and Z. In view of the above, we would

prefer to test the null hypothesis of

Hq: No correlation versus Correlation , (1.11)

viewing this as a test of a non-useful versus a useful relationship

between the two variables.

To us, the most natural and intuitive type of correlation is the

coefficient t given in (1.10). The corresponding hypothesis of

interest is

Hq: t = 0 versus ^ Q , (1.12)

or the one-sided alternate hypotheses of positive correlation (x>0) or

negative correlation (t<0). Note that under Hq, the probability of

concordance equals the probability of discordance, so that there is no

correlation between Y and Z, in the sense that one variable does not

increase or decrease with the other variable. Of course, when Y and Z

are independent, t=0, so that if one rejects the null hypothesis of

(1.12), one can safely conclude that the variables Y and Z are indeed

dependent, and the dependence is a useful one at least in the sense of

predicting direction.
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As we mentioned earlier, many authors of statistics textbooks

such as Agresti and Agresti (1979) and Ott, Larson and Mendenhall

(1983) in testing the hypotheses of (1.12) base their rejection of Hq

on the quantity

Z —
. (1.13)

r 2(2n+5) 1
^2

'
'^nln-iy

A

where t is Kendall's estimate of t given by

^ =— I

(2) i<j
Sg.((Y,-Y^)(Z,-Zj)l

We believe that such a test is inappropriate even for large n since

the denominator of (1.13) is the standard deviation of x under the

more restrictive hypothesis of independence. Our suspicions of the

inappropriateness of such procedures were supported by our Monte Carlo

studies where we found that, in some cases when t=0 but Y and Z are

possibly dependent, the empirical a-levels were highly inflated,

indicating that this procedure was not maintaining its a-level over

the broad class of distributions for which x=0.

In chapter 4, we review and evaluate the different procedures

available for testing (1.12). In particular, we discuss the procedure

recommended by Fligner and Rust (1983) and highlight its limita-

tions. Then, we propose a statistic similar to the one given in

Fligner and Rust but which has more desirable properties. The

performances of all of these procedures are then investigated by a
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Monte Carlo study. The results of this study and a summary of

conclusions and recommendations are given at the end of chapter 4.

In chapter 5, we return to the partial correlation problem in an

effort to investigate the performances of the tests based on the

statistics T^, and some of the statistics studied in chapter 4 but

this time applied to the residuals. Through a Monte Carlo study, the

empirical powers and sizes of seven different statistics are compared,

both under the hypothesis of independence and the hypothesis that

T=0. In each case, the residuals are obtained by two different

methods of regression parameter estimation: (i ) the ordinary least

squares method, and (ii) the method of least absolute regression. The

tables of results appear throughout chapter 5 followed by our

conclusions and recommendations. A list of related topics for future

study appears at the end of chapter 5.



CHAPTER TWO
PROPERTIES OF THE STATISTIC T„

2. 1 Introduction

Let (Xj^, Zj^), (X2 , Y2 , Z 2 ), .... (Xf,, Yf^, Z^) denote a

random sample of observable triples from some absolutely continuous

distribution, with distribution function F(*), and let (X, Y, Z) be

distributed as (Xj^, Yj^, Zj^). To test the conditional independence of

Y and Z, holding X constant, we shall assume that each of Y and Z is

linearly related to X as follows.

and

Y. = a, + 0,X. + E.
1 1 1 1 1

Z. = + 6^X.
1

+ E.
1 2 2 1 1

( 2 . 1 . 1 )

where and S
2

unknown parameters which need to be

estimated. Here, Xj^, X£, . . . , X^, which will be referred to as the

"covariate terms," are independent identically distributed (i.i.d.)

random variables with an absolutely continuous distribution function

Fj((‘), mean ^nd variance 0^. The "error terms" (E^-, E^'),

i = 1, 2, . . . , n, are i.i.d. absolutely continuous bivariate

random variables. The respective marginal distribution of

(E^l) is assumed to have mean zero, distribution function

H^(-) (H
2
(*)) and variance Further, it will be assumed that

X^. is independent of (E^., e! ), i = 1, 2, . . . . n.

13
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The hypothesis of interest is

I

E^. and E^. are independent, i =1, 2,..., n.

Our proposed test statistic, T^, is the Kendall's tau statistic

applied to the residuals (i.e., to the estimates of the unobservable

error terms, E;^, E£, . . . , and z[, E^, . . . , E^). If «2.

A A

and ^2 denote the estimates of «2» ^2» respectively,

the residuals are given by

and

u. = Y. - a - B,X.
1 1 1 1 1

V. = z.

A

- B„X.
1 1 2 2 1

( 2 . 1 . 2 )

and the proposed test statistic is

where

T
n

I Sgn[(U.-U.)(V.-V.)],

(
2

) i<j
1 J 1 J

Sgn(t) =

1 if t > 0

0 if t = 0

-1 if t < 0 .

(2.1.3)

In the sections to follow, we shall discuss the properties of this

statistic. In section 2.2 it will be shown that the distribution of

is free of the regression constants ®2*

location parameter and the scale parameters and <J^,,AAA
provided that the estimates of the regression constants a^,

A

and &2 satisfy certain general properties. In section 2.3 the small
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sample moments and the symmetric distribution of under the null

hypothesis of independence will be discussed. In section 2.4 the

asymptotic distribution of under Hq will be developed. Section 2.5

will contain the tables of the small sample null distribution of the

Tf, statistic as generated by a Monte Carlo simulation study when the

Xj's, E-j's, and E^'s are normally distributed.

2.2 The Effects of Parameters on the Distribution of Tp

Unlike the usual Kendall's tau statistic, is not a

distribution-free statistic even under the hypothesis of the

independence of the "error terms." Its distribution depends on the

I

distribution of the X^-'s, E^-'s and E-j's, i = 1, 2, . . . , n. To see

this, we write the residuals given in (2.1.2) in terms of the error

terms to obtain

= X^. + E^. ,

and similarly, (2.2.1)

V. = - (e^-S^) X. + Ej , i = 1, 2, ..., n.

The statistic T^ is the Kendall's correlation coefficient (Kendall's

tau) calculated on the pairs

(U.,v.) = [(a^-a^)-(6^-6^)X.+E.
, (a

2
~a

2
)-(32-S2 )X^-+E I ], (2.2.2)

1
“ n.
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The distribution-free property of the usual Kendall's statistic under

Hq results from the fact that under the hypothesis of independence the

two elements of the pair are exchangeable, and there is independence

between pairs. However, in the set-up considered here, the two

elements of the pair are not exchangeable due to the presence of the

X^-'s in both elements. (Note that in (2.2.1) the X^-'s appear bothAAA A

explicitly and implicitly through the estimators 02» ^1»

Although the statistic is not distribution-free, its distribu-

tion does not depend on the parameters “i, ^1» ^2» ^X»

under "translation" and "scale" properties to be discussed later.

A A

The statistic T^^ is free of the terms a^, 012 , and since

these quantities are cancelled out by taking the differences of the

residuals. Writing

Sgn {(U.-U.HV.-V.)}

= Sgn {[(E.-Ej)-( 8 ^- 3 ^)(X.-X^)J[(E^.-Ej)-( 62-S 2
nX.-Xj)J},

we see that

T. = -j- I Sgn{[(E -E )-(3.-Bj(X -X )][(e!-E‘.)-(L-8J(X.-X,)]}.
(") i<j

^ J 1 1 1 j 1 j 2 2 1 j
J

(2.2.3)

Thus, without loss of generality, the intercept terms

taken to be zero. Furthermore, the distribution of T^ is free of the

location parameter For, if ^ 0, consider the transformed zero-

mean random variables X? = X^. - y^, i = 1, 2, . . . , n. The



17

underlying model may now be written as

and

i 1» 2 ,,.,, n t

Y, = t 6j(X. + u^) t E.

= a; + 8.x* + E. ,
1 1 1 1

Z, = a' . S^x, . t; .

where a| = oil + and ^

I I

By the preceding argument, is free of cij^ and oi^* is therefore

free of the location parameter

To ensure that the distribution of is free of the remaining

7 7 7
parameters 8]^, 82. ‘^E’’

sufficient that the slope

A A

estimators 8^ and 82 satisfy the following properties.

“Translation" property 2.2.4

Assume each 8^- , i =1, 2, satisfies

'' A

8^- (Xj^, . . . ,x^; yj^+cxj^, . . . , Y^^+cx^) =
8.j

(x^^, . . . ,x^; y^.^^^.y^) + c

for every Xj^, . . . , x^, y^» • • • »
y^j

and c.

"Scale" property 2.2.5

A

Assume each 8^. , i = 1, 2, satisfies

^
1 A

8i(aXi»...,aXnJ by^^,..., by^)

for every x^. . . . , x^, y^. . . . , y^. b and a ^ 0.
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From expression (2.2.3), we can see that the statistic

involves quantities of the form

and

- Sj) X,

E; - 1«2
- 83) X,

( 2 . 2 . 6 )

Applying property 2.2.4 with c = c = -^
2 * '"espectively, we

obtain

, . , . , , y
2.

’ * * ’ ^ » • • • > »
y
2”

* *y
pi”

^

and
A A

^2 ^ * * * * *
^n

* ^ 1
* * * * *

^n
^
~
^2

” * * *

*^n* ^1~^2^1* * * *

*^n"”^l^n^

so that the quantities (B^^ -0^^) and (B2 - B2) may be replaced by

and

^ (X^,...,X^; Y^-B^X^,...,Y^-0^X^)

^2 ^1 ”^2^1 ’ * * * ’
^n'"^2^n

^ ’

without changing the value of Tp. These new estimators B* and B^ are

the slope estimators obtained by replacing Y.j by Y2~B.jX.j and by

^2^i» respectively, in the model structure

Y.
1

a. + 6.x. + E.
1 1 1 1

and

Zi
=

«2 ^ Vi • i = i. 2 ,..., n .

This is equivalent to using the slope estimators obtained from the

models
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Y^. = and Z. = “2 ^ 2,..., n ,

which is the usual model with ~ Consequently, the

statistic does not depend on the values of the slope parameters 6]^

and 32*

Next, "scale" property 2.2.5 is used to show the distribution of

is free of the scale parameters and . The statistic

involves residuals of the form

U. = Y. - 3,X.
1 1 1 1

and

V^- = Z. -
32 X. , i = 1, 2,..., n

From property 2.2.5 with a = 1/oy, and b = 1,

^X^i ^^1* ' * *

*^n* ^l*'"’^n^
”

^i
* *

’^n^'^X’ ^l*"*’^n^ *

i = 1, 2, so that the residual estimates above may be written as

U. =
Yi - (Xj^,...,X^; Y^^,...,Y^) (-^)

A

X.

A

and

V.
1

X.

Yi -
32 (Xj^/cTj^,...,X^/a^; Zj^,...,Z^) (-^) ,

X

which indicates that the X/s may be replaced by their standardized
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forms, without changing the values of the residuals. Thus,

is free of the scale parameter of the X's.

From (2.2.6) and the discussion immediately following, we can see

that may be written in terms of residual estimates of the form

and

R^. ~ (Xj^,...,X^; Ej^,...,E^) X^. ,

= Ej -
02 E{,...,E') X. . (2.2.7)

Applying "scale" property 2.2.5 with a=l and 5=0^, we have

0|^(Xp...,X|^; 0j^(Xp...,X^; E^,...,E^)

Simi larly.

02(Xj^, . . . ,X^, Ej^/cr^
I , . .

.

,E^/(J^
1

) a.
,

’ * ’

*^n* »

so that replacing the error terms (E^ ) in (2.2.7) by their

standardized forms E^-Za^ (E^/a^.), i = 1, 2, . . . , n, will result in

transforming the residual estimates to R-j/c^^ (Rj/a£'). However, the

statistic which is based on the sign of the product of the residual

differences is not affected by such scaling, since both and are

positive constants, and hence the distribution of is free of these

scale parameters.

Thus far in this section we have shown that if and B2 satisfy

properties 2.2.4 and 2.2.5, the distribution of the statistic Tj^ is

independent of the regression constants used in the linear models, the

location and scale of the "covariate term" X, and of the scale
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parameters of the error terms. In the remainder of this section, we

shall demonstrate that properties 2.2.4 and 2.2.5 are very natural,

and that the three types of slope estimators we have used in this

study, namely the least squares estimator (OLS), the least absolute

value estimator (LAV), and Theil's slope estimator, all satisfy these

properties under the linear model

Y^. = a + 8X^. + E^. , i =1, 2,..., n .

The least square (OLS) estimator of the slope is given by

II ^

I (x^.-x) (y^.-y)

I(x -x)‘

i=l
^

so that

(i) ® ( X , . . . , , y 2^'^’Cx , . . . ,y |^+CX|^ )
=

II ^

I (x.-x) (y.+cx.-y-cx)
i=l

^ ^

n ,

I (x.-x)^
i=l

I (x.-x)(y.-y) c I (x.-x)^
- i=l ^ . i=l

’

-^2
I (x,.-x)

i=l

-,2
n

I (x.-x)
i=l

^

- ^ (Xj^ , . . . , x^ j ^l****’^n^ c ,

(ii) S (aXj^ , . . . ,ax^ j byj^, . . . ,by^) -

I (ax. -ax) (by. -by)
i=l

n
-,2

I (ax. -ax)
i=l

^
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n _ _

a b I (x.-x)(y .-y)

i=l
^ ^

? (x,-x)^
i=l

b
^

~ ^
(^2^ »

•

• • » » yi*****^^^ *

provide a?^0, and 2.2.4 and 2.2.5 are satisfied.

The least absolute value (LAV) estimators of » and 3, denoted by

A A

a and 3 respectively, are the values of a and 3 which satisfy

n n ^ ^

min I I

y.-a-6x.
1

= I 1

y.-a-3x.
|

. (2.2.8)
ct.3 i=l

^
^ i=l

1 1

To see that the LAV slope estimator, 3, satisfies properties 2.2.4 and

2.2.5, note that

n n

min I I

y.-a-3x.
|

= I |

y.-a-3x.
|

a,3 i=l
’

1 i=l
1 1

n A A

= l I
y.--«-(3+c-c)x.

I

i=l
^ ^

n .

= I I
y..+cx.-a-(8+c)x.

I

i=l
’ ^ ^

so that if y^. is replaced by y^.+cx^., i =1, 2, ... , n, the new
A

Slope estimate is given by (3+c), which proves the "translation"

property 2.2.4. Also, for a?^0 and b?^0.
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n

min
I I

y.-a-8x.
a. 6 i =1

n

y.-a-6x.

. . ax.

I
by,-ba- 8(aXj)

|

This last expression indicates that when x^. is replaced by ax^., and y^.

is replaced by by^., i = 1,2, . . . , n, the new slope estimate is

• b
given by — g. Note also that b=0 is equivalent to all the y^. 's equal

to zero, in which case the LAV estimates are a=0 and 6=0. This proves

the "scale" property 2.2.5.

Theil's estimate of the slope (see Sen, 1968) is the median of

the (2) slopes obtained from the (X.j, Y.,- ) pairs, i.e.,

- y . -y

.

b(Xj^,...,x^; = median
{

^

}
.

i<j ^j'^i

We assume that all the x^'s are distinct because they have a

continuous distribution. It follows that
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^ y .-cx .-y.-cx.

(i) e(x,,...,x ; y,+cx,,...,y +CX )
= median {

^ -}
n n Xj X.

= median
{

i<j

c
}

and

by^
(i1) e(ax,,...,ax ; bx, bx„) “median

( ,J ,, I
n i

i<j
axj-ax.

_ b ",
. \

^
3 ( , . . . , x^

,

y2^»»»*»yp) t

and therefore this estimator also satisfies the properties 2.2.4 and

2.2.5.

2.3 The Null Hypothesis Distribution of

The test statistic T^ given by

Tn Sgn{[(Y-Y.)-Si(X.-X.)][(Z.-Z.)- 62 (X.-X.)J} (2.3.1)

1

(2.3.2)

would be a U-statistic of degree 2, except for the presence of the

terms
gj^

and g2
. The symmetric kernel of this U-statistic with these

two auxiliary estimators in the kernel is
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Sgn{[(E^-E2)-(3i-Bi) (X^-X2)][(Ej-E‘)-( 02-32)

.

where S. = (X. ,E.,eI), i = 1 , 2 . Because this U-statistic involves
1 I 1

the estimated parameters 3i
and 02 * ordinary U-statistic theorems

(see, for example, Randles and Wolfe, 1979) cannot be used to develop

its large sample distributional properties. In what follows, we will

use equal -in-distribution arguments to show that under Hq when the

distribution of at least one of the error terms, say E, is symmetric

about zero, is symmetric about its mean zero. In addition, we

shall derive an expression for Var[T^], and discuss the null

asymptotic distribution of using a theorem by Randles (1982).

Since the distribution of is free of the parameters a^, 02 . 01

and 02 , with no loss of generality we assume each of them to be zero

in the following discussion. The statistic may be written as

\ Sgn {[(E,-Ej)-8i(X,-X.)K(E:-E^)-62(X,-Xj)]1 , (2.3.3)

A
.
A

Where
0j^ ( 02 ) is a function of the X.j's and the E.j's (E.j's). Let

= [(E,-E.) - 5^(X,-X.)]

= C(E:-E') - ;^(X,-X.)]

and
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and write

T =
n

I

i<j

Sgn { q..q:. }
^ ij ij

^

Now suppose the distribution of the E-'s is symmetric about zero, that
d

is E^. = -E^. , i = 1, 2, . . . , n. From the "scale" property 2.2.5, we

note that

(^1 , . . .

,

Xn j ~E2,...,“E^) = • • • » » Ej^,***, •

Using the independence of the E^-'s and their independence from the

I

E^- 's and X^- 's, we have

(XpE^,Ej^,...,X^,E|^,E^) - (X^,-E^,E^,...,X^,-E^,E^) .

Computing on both sides of the equal in distribution sign yields

and, therefore, under and the assumption of the symmetry of one set

of error terms, is symmetric about its mean of zero. Note that

when the assumption of symmetry is dropped ECT^] is, in general.
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different from zero even under Hq, and will be given by

E[TJ = P
{ Qi2Ql2>0 }

- P
{ J

= 2P
{ }

+ 2P
{ Q^2<0» ‘ ^ • (2.3.4)

The expression for the null variance of is rather complex

since the distribution of depends on the underlying distributions

of the X^'s, E^-'s and E^. 's, and the type of slope estimators and §2

used to generate the residuals. This, however, causes no limitation

to the applicability of our results for large sample sizes as we shall

demonstrate later, since the limiting null variance is free of the

underlying distributions and the kind of slope estimators used. For

the sake of completeness, however, we will include the general form

for the null variance of T^^. We write

Where

h(S^.,S.; e) = Sgn {C(E.-Ej)-3^(X.-Xj)j[(E*- E‘ )-S
2
(X.-X^)]}

= Sgn
{

Q. .g: . }^ ' ij ij ‘

and 3 = (3j^.B2) . Let e denote the mean of T^ given in (2.3.4).

That is.

0 = 2P{Q^2^0' + 2P{Q^2<0» ^ *
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Then,

VarCT^] = E[{-^ I [h(S.,S.; e)-e]}^]

There are three types of terms in the above expression:

Type 0, where the two kernels involve no subscripts in common.

There are

such terms.

Type 1, are terms with one subscript in common. There are

such terms.

Type 2 terms have two subscripts in common. There are ( 2 ) of

them.

Denoting the expectations of such terms by cq, and ? 2 »

respectively, we have

(2)(q)("2^) = (^)
L^-2)(n-3)

)
= 2(")(n-2)

(n-2)(n-3)
2 ?0 + 2(n-2) + ^

2
] . (2.3.5)
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where

A A Q

Cy = ELh{S^,S2; 6), h(S3,S^i B)J - 0
/Nrf

= E[Sgn
{Qi2Qi2l Sgn (034534}]

'

= P{Qj2Q;2>0.034‘134^°1 * '’(0l2<li2<O.Q34034-^“l

032032^0»Q34Q34^0} “ 9

= 2P(Qj2Q|2>0.034034>0} 2P(Qj2gj2<0,Q34q34<0} -1-9^
.

= E[h(S^,S2; B) h(S^,S3; B )j - 0
'

rsj

= 2P{Q^2'^|2^0»Ql3Qi3>0l + 2P{Qi,Q;5<O,Qt^Q;,<O}-1-0^ ,

and

?2
= E[n(s^.S2; e) h(s^.S2; b)] - 0

'

A/ Arf A/ Arf

= 1 - 0 , if n > 2.

(2.3.6)

(2.3.7)

(2.3.8)

We have shown earlier that when the error terms of one of the

underlying linear models, the E's say, are symmetrically distributed

about zero, then 0=0 under Hq. However, this does not significantly

simplify the expressions for Cq and since to evaluate these

expressions one needs to know the distribution of the covariate term,

X, and the joint distributions of variables of the form
{Qij.Qk]} and

I I

iQijp'^ki}- We shall demonstrate this by calculating the null

hypothesis value of Var[T^] in the special case when E^. (E^!), i = 1,

> n, have the standard normal distribution, and when Bj^ and
A

B2 are the ordinary least squares estimators of B^^ and
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respectively. Under the symmetry of the error terms, 9=0 and

conditional on X = x

[(E^-E2)-6j^(x^-X2), (E^-E^l-gj^lx^-x^)]

d A A

= [-{E^-E2)+6^(Xj^-X2), -(E2-E^)^^ ^^(x^-x^)] ,

since by property 2.2.5 of

» X , ~E
1

’ . . , ~E ^ ) —3
^

( X ,

A similar statement can be made for the terms involving E*. Taking

expectations with respect to X, and using the above arguments and the

null hypothesis of the independence of E^. and El, the expression for

?Q given in (2.3.6) simplifies to

= Ej^{8PCQ^2>0.Q34>0]P[Qi2>0.Q34>011

" M X = x} . (2.3.9)

Similarly,

= Ej^{8P[Q^2>0»^13^0HPWi2>0*Qi3>0H

+8P[Q^2^0»Ql3<0JPLQi2^0»Ql3<0l] ‘ M X = x} , (2.3.10)
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where denotes expectation with respect to the vector of covariates,

X . To obtain an expression for Var[T ], we need the following lemma~ n

which we will state without proof:

Lemma 2.3.11

Suppose
(J)

~ BVM ^(q), ,

then, P [X_^0 , Y^O] Sin ^(p
)

,

and consequently, P [X _> 0, Y < 0] = Sin~^(p )

(see for example, Cramer, 1966, p. 290).

The least squares estimator 3^ is given by

I (X.-X)E I (X -X)E

B = = i=l
^ ^

y (x.-x)^

where

" - 2

Sxx = I (X.-X)'^ ,

so that, for example.
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P { I

X = X }

/N/

(x,-Xp) n

= P{[(E,-EJ ^ I (x,-x)E,]>0,
^ ^

^xx i=l
^ ^

[(E1-E3)-
(X1-X3) n

I (x.-x)E.]>0}
1=1

^ ^

where

(x.-x.) n

^ ^ ^xx k=l

This probability statement involves linear combinations of i.i.d.

standard normal random variables. The combinations are also zero mean

normal variables, so that by lemma 2.3.11

P{qi2>0.qi3>0} = j + ^ Sin'^[P (x,12,13)] ,

where

P(x,12,13) =
Cov(q32,qj^3)

{Var(q^2^ Var(q^3)}
^^2

But,
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Cov (c^2^2»Q ^
— 1

(Xj^-x^) (Xj^-x) (Xj^-x^) (x2"x)

XX XX

( ^ ~^2 ) (
x^

“X ) (

x^
”X2 ) { X2~x ) ( X ~X2 ) (

x^
“X^

)

S S
XX XX XX

(x^-X2)(x^-X2)
= 1 -

^
,

XX

Var(qj^2^ = 1 + 1 +
^

(Xj^-X2) 2 (x^-X2)(x^-x) 2(Xj^-X2) (x2“x;

XX XX XX

- 2 -(x^-X2) ,

and

Var{qj^2) = 2 - (Xi~x^) /$„„ .

1
"3' '"xx

These yield

p(x,12,13) =
S^^-tXj-XjXXi-Xj)

(2

To evaluate P {q22^0»d34^0 }> we need the quantity

p(x,12,34) =
Cov(q^

2 »‘l 34
)

{Var(q^2^ Var(q_^4)}
1/2

which may similarly be calculated to be

p(x,12,34) =
-(Xj^-X2){x2-x^)

.3.12)

(2.3.13)
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The probabilities associated with q.. involve the saiue quantities
d

.

ij

given above, since E^. = E^. , i = 1, 2, . . . , n. From the expressions

for and q given in (2.3.9) and (2.3.10) we obtain.

^0 =

j- 27
Sin’^[p(x, 12 , 34 )]}^ - 1

I

X = x ]

= 4Ex[{Sin’^[p(x,12,34)]}2
|

X = x]/tt^ ,

and

q = 4ExL{Sin"^[p(x,12,13)]}2
|

X = x]// .

From (2.3.5), we get

VarCTJ = ^ * 2(n-2)ci + 1]
(
2

)

where

^ =^E^ 2 “^X
jsin’^ -

(X^-X2)(X3-X4)

{[2Sxx-(Xi-X2) ^L2Sj^^-(X3“X^)

and

IT ~ L'

jsin"^ - \>c^h-h'^^h-h^

([2Sxx-(Xi-X2)2][2S)(x-(Xj-X3)2]j‘/2

with E^ indicating expectation with respect to the random vector X.
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2.4 The Asymptotic Null jistribution of

The asymptotic normality of T^ under is a direct result of a

theorem by Randles (1982), which gives the asymptotic normality of a

U-statistic which involves an estimated parameter. To verify the

conditions (given below) of Randles' theorem, we need the following

assumptions;

I

2.4.1 E (E ) is a continuous random variable with a bounded and

continuous density function, has median zero and a finite

variance.

2.4.2 The covariate term, X, has a finite fourth moment.

Consider the U-statistic

— Sgn{[(Ei-£j)-(y^- 8i)(Xi-X.)J[(E:-E')-(,
2
-
82 )(X.-X.)]}

(2.4.3)

Where the mathematical variable y= (Yj^,Y2)' replaces the estimator
A A A

6 = ( 62 * 82
)'. The corresponding kernel is

= Sgn{[(E2-E2)-(Y2-e2)(X2-X2)][(E{-E')-(Y2-e2)(X2-X2)j}

(2.4.4)

with S^. = (X^. ,E^. ,E^I
)

' . The Conditions of Randles' theorems

follows:

are as
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Condition 2.4.5

- 6) = 0(1) .
rsf n

Condition 2.4.6

Suppose there is a neighborhood of S, say K(6), and a constant

K,>0 such that if YeK(8) and 0(Y,d) is a sphere centered at y with

radius d satisfying 0(Y,d)Cir K( 3 ), then

£[ Sup
I
h(S^,^; y') - h(SpS2; y)

1 ] £ K^d .

y' e0( Y.d)

Condition 2.4.7

Suppose there exists a constant > 0 such that

lh(x.,x^; y) - h(x.,X 5 ; 3)| < M,

for every x,, x, and for all y in some neighborhood of 3.

Condition 2.4.8

9(y) has a zero differential at y=S, where

e(Y) = E[T (y)J = E [h(S,.S.; y)J .
11'^ '^/X

Condition 2.4.9

^/2 d „

n [T^(3) - 9(3)] > N(0, t'^)

where = 4 Var{E[h(^,^; £)1S^]}.
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THEOREM 2. 4. IQ

Under assumptions 2.4.1 and 2.4.2,

n [T„(3) - 0(s)] > H(0,t ) , as n-H» .

Proof. This is seen by verifying conditions 2.4. 5-2.4. 9 given above.

Condition 2.4.5

We need to show

- 3) = 0(1) .

~ ~ P

For this condition to hold in general one needs a stronger assumption

A

than the consistency of the estimator 3.

For example, from the Markov inequality, and for i = 1, 2,

P
{
n'

1 3^.-3^. I

> e
} 1 nE[( 6--3^. ) ]/ e .

so that it is sufficient that the second moment of 3-j around 3-j
be of

order n”'^, 6 2. However, in our particular setting, when
3^ is the

slope estimator of 3 ^- in the simple linear model, we can show that for

i = 1, 2, n^^^( 3 ^-- 3 ^- ) converges to some bona fide distribution,

thereby proving this condition. In what follows we shall demonstrate

that, under very broad assumptions, this indeed is the case for the

two estimators of interest: (i) the OLS estimator and (ii) the LAV

estimator s of 3 .
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{ i ) The QLS estimator :

For the model

Y^. = a + gX^. + E^. , i

8-g =

I (X -X)(E -£)

1=1 ^ ^

" - 2
I

(X.-X)^

i=l
'

1
"

^ I X.E. -

= li=L_Ll_

- I
-

" 1=1 1

X E

"v^
= g(C)

where

C,

and (Cj^,C
2
,C

2
,C^) . Using properties of sample moments

example, Serfling, 1980, p. 125), we see that

C is AN [E(0 , - D ,~ ~ n X'

where I is the covariance matrix of (X^, E^, X^, X^E^). B

independence of the X.'s and E.'s, g(E(CJ) = 0, so that by

(see for

the

corollary
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3.3 of Serfling

(3-6) = g(C) is AN (0 i D' 0 ) ,
rs*

where

0 =
(
11

' 3C
1

C=E(C)

11
9C,

C=E(C)

Therefore,

n^'^^(3-3)

d

N (0, o' 0), as n > " .

Hence, since admits a finite fourth moment, and the error terms

have finite variance, n^/^(6-3) converges in law to a bona fide

distribution implying n^''^^(3-3) = 0p(l).

( i i ) The LAV estimator :

Consider the linear model given in (i) above, and let 3* be the

LAV estimator of 3 = (a, 3) , i.e., 3* = (cx*,3*)’ is a solution to

n

min
{ I

3eR^

Yi-ai-3Xi }
.

Let H(.) denote the absolutely continuous distribution function

of E^. with median zero and continuous and positive density h(*) at

zero. Let denote the nx2 regression matrix which depends on n

through the sequence of constants x., x«, . . . , x . Bassett and
I c n

Koenker (1978) have shown that if Q = is positive definite,
nx»
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1/2 *
then n (6 -3) converges in distribution to a bivariate normal vector

2 -1 -1
with mean 0 and covariance matrix w Q , where w = [2h(0)3 . The

* 1/2 *
above result implies that for the slope estimator 8 , n (8 -3)

converges in distribution to a normal random variable with mean zero

2 2 I “i I

and variance ^ = w ^'q ^ , where ^ = [0,1]'. Letting

g (x ,E )
= n^''^(3*-3)/v

n ~n ~n

and

9

for every sequence of regression constants {x^} for which Q exists and

is positive definite, we have

lim F (t) = $(t)

n- "

where '*’(•) denotes the distribution function of the standard normal

random variable. In the case where X 2 , . . . , is a sequence

of random variables defined on a probability space P and having mean

p
zero and variance ,

1 a.s.

T Q =
n n n

1 0

,0 i
as n

- 00

where

x' X =
n n n

n X?

i=i

"

with
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n X.

X = I
—

n n

It follows that

and

Q =-^
L

0

1

2 , 2v=wXQ X=w/aj^,
/V />/

SO that if we let

^.x
= P

1 I } .

by Basset and Koenker's (1978) result we have

lim „ (t) = $(t) a.e. in X .

n , A ~nn^ ~n

But

= I

X

F„ . (t) dP
n,x

~n

= / {I

X
~n

‘IP

where Ij-.j is an indicator function. Then by the Lebesgue Dominated

Convergence theorem

1’™ '
1 9n<in-^n>i‘ t

nx»

= I

X
~n

lim
n-H»

Pn X It)

"in
dP = $(t)
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and therefore

1/2 * ^

n aj^{0 -s)/w -» N(0,1) as nx».

Condition 2.4.6

To verify condition 2.4.6 for the kernel of this setting, we

examine the following:

Let

S* = Sup
I
h(S^.S

2
;

y') - h(S^.S
2

; y) |

Y eD(y*<^)

Sup {I Sgn{[(£^-E2)-(Yi-Si)(Xi-X2)J[(£{-£')-(Y2-62)U^-X2)J}

Y eD(Y>^)
~ ~ -Sgn{[(£^-£2)-(Yi-3i){X^-X2)J[(£|-£2)-(Y2-62)(X^-X2)J}|}.

Denoting B.(|) = ( 5 ^-- 6 ^-)(X^-X
2
), i = 1, 2, we have

f
2 if C(£^-£2)-B^(Y')][(Ei-E2)-32^T')] > 0 (<0 )

and

[(£^-£2)-B^(y)J[(£|-£‘)-B2(y)] < 0 (>0)

S* = J
1 if

[(£i-£2 )-Bi(y')JL{£|-£ 2
)-B

2
(y‘)J =0 (?^0 )

and
[(£^-£2)-B^(y)][(£;-£2)-B2(y)] ^ 0 (=0)

^0 otherwise .

When taking expectations, only the value of S* = 2 contributes to the

expected value, since for S* = 1 the expectation involves

probabilities of continuous variables taking on zero values. Hence,
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ECS*] = 2P{L(E^-E2)-B^(Y')][{£i-E')-32(Y')J > 0 .

[(E^-E2)-B^(Y)][(Ei-E2)-B2{Y)] < O}

+ 2P{[(E^-E2)-B^(y')J[(E|-E2)-B2(y')] < 0 ,

C(E^-E2)-B^(y)][(E'-E2)-B2(y)] > 0}

= 2P{(E^-E2)-B^(y') > 0.(E‘-E')-B2(y') > 0, (E^-E2)-B^( y) < 0.

(E|-E‘)-B2(y) > 0}

+2P{(E^-E2)-B^(y‘) > 0,(Ej-E‘)-B2(Y‘) > 0. (E^-E2 )-B^{ y) > 0,

(E{-E2)-B2(y) < 0}

+2P{(E^-E2)-B^(y‘) < 0,(E|-E2)-B2(y‘) < 0. (E^-E2)-B^{ y) > 0,

(E{-E2)-B2(y) < 0}

+2P{(E^-E2)-B^(y') < 0.(E;-E2)-B2(y‘) < 0, (E^-E2)-B^( y) < 0,

(E{-E2)-B2(y) > 0}

+2P{(E^-E2)-B^{y') > 0.(E{-E‘)-B2(y‘) < 0, (E^-E2)-B^( y) > 0.

(Ej-Ep-B2(Y) > 0}
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+2P{(E^-E2)-B^(y') > 0.(E|-E‘)-B2(y‘) < 0* ^ 0*

(E‘-E‘)-B2(y) < 0}

+2P{(E^-E2)-B^(y‘) < 0,(E|-E2)-B2(y‘) > 0. (E^-E2)-B^( y) > 0.

(E{-E2)-B2(y) > 0}

+2P{(E^-E2)-B^(y') < 0.(Ej-E2)-B2(Y‘) > 0, (E^-E2 )-B^(y) < 0.

(£j-Ep-B2(Y) < 0} .

Denote the above probabilities by P2» p^, . . . , Pg, so that

E[S*J = 2(pj^+P2+Pg+P4+Pg+Pg+P7+Pg), and note that for > X2 ,

Pi IP {(E^-E2 )-B^(y')>0, (E^-E2)-B^(yX0
}

= P {(E^-E2)-(y|-S^)(X^-X2)>0, (E^-E2)-(y^-S^)(X^-X2)<0
}

= P
{

E^-E2
> Yi-S,,

E1-E2

X^-X2 '1 ^1’ X~-X2 Yi
-

3i } .

Similarly,

Pslf 1

^1-4
.

- 6,

^1-^2
, , -

8, 1

E -E E ' -E

'

By assumptions 2.4.1 and 2.4.2 the random variable has

a distribution function K(-)[K'(-)], and a density k(*)Ck'(*)] which
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is bounded by B[b'] and continuous, so that

E.-E,

^^3 i. 2P{min(Yj-e^,Y^-8^) < ^
< max(Y|-S^ Y]^-6^) }

= 2K[max(Y^-B;^,Yi“6j^)] - 2K[min(Y{-8^,Y]^-Bl)]

= 2
I
maxiYj-B^.Y^-Sj^) - min(Y|-B3^, Yj^- 8^) |

k(5*)

= 2
I
max(Y^.Y]^) - min(YpYi) I

= 2 d B ,

*
I I

where c = 6[max{

Y

j^, Yj^)
“ min(Yj^. Y]^)] for \s\ <1, and

since y' e 0 (Y.d).
/v» ^

Similarly ^
2^^ a,

—

E[S*] _^8d(B+B‘), which proves condition 2.4.6 with = 8 (B+b').

Condition 2.4.7

By the definition of the kernel h, this condition holds with

= 2 .

Condition 2.4.8

We need to show that

0(y) has a zero differential at y = S.

where 0(y) = E[T (y)J = E[h(S,,S,; y)J.

r>j



46

Using the notation adopted under condition 2.4.6, and

conditioning on and X
2

,

0(y) = y)|X^ = \ = x^]

= E[Sgn{C(£^-E2)-b^(Y)][(E^-E‘)-b2(Y)]}]

= P
{

(£^-£
2

) > b^(Y), (E‘-£2) > b2(Y)
}

+P
{ (£^-£

2
) < b^(Y), < b2(y)

}

-P
{

(£^-£
2

) > b^(Y). (E^-E') < b2(Y)
}

-P
{

(E]^-£2) < bj^(Y), (E^-E^) > b2(y)
}

= 2P
{ (£^-£

2
) > b^(Y), (Ej-E') > b2(Y)

}

+2P
{

(£^-£
2

) < b^(Y), (E^-E') < b2(Y)
}

- 1 .

Under the null hypothesis of the independence of E^- and £^-, i = 1, 2,

. . . , n, the above probabilities factor to yield

£[h{Si,S
2

; y)|Xj^ = X2 - X2]

= 2[l-F^(b^(Y))][l-F2(b2(Y))] + 2F^(b^( y) )F2(b2(Y) )
' 1].

Thus
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where

Bi(£) = (5.-3.)(X^-X2) , i = 1. 2,

and Ey
^ denotes a two-fold integral yielding the expectation with

respect to X
2

. Using assumptions 2.4.1 and 2.4.2, differentiation

with respect to Y may be passed inside the integral (see

for example theorem A. 2.4 of Randles and Wolfe, 1979), yielding

the differential of the function 9(Y) to be

+23B^(Y)f^(B^(Y))F2(B2(Y))

+23B2(Y)f2(B2(Y))F^(B^(Y))}

= Ej^^^^^{29B^(Y)f^(B^(Y))[2F2(B2(Y))-l]

+29B2(Y)f2(B2(Y))[2F^(B^(Y))-l]}

=0 at Y = 3 , since B.(3) =0,

i = 1» 2, and Fj^(O) = F
2

( 0 )
= 1/2. This proves condition 2.4.8.

Condition 2.4.9

We need to show that

nl«[T^(6) - 0(6)] i N (0 ,t2) .
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This is a direct consequence of U-statistics theorems, since under

V£' Sgn((£, -EjHe; -Ep)

is a U-statistic based on the i.i.d. random variables (E]^,e|), . . . ,

. I

(See for example Theorem 3.3.13, Randles and Wolfe, 1979.)

Further, under H^,

9(8) = E[h(S.,Sp; e)]

= 2P{E^-E2>0, E^-E2>0} + 2P{E^-E2<0, ^

= 2P{E^-E2>0}-P{E;-E‘> 0} + 2P{E^-E2<0}-P{E;-e‘<0} - 1

= 0 .

= 4Var {E[h(S,,S„; 0 )|S. = s
}

= 4 E
3

{(E[h(S^,S
2 ; S)|S^])^} .

since

{E[h(S.,S„; 6)1$,]} = ECh(S Syl S)]
=

»N#

0 .

'^'Eh “ s = (t,u,v), and by procedures similar to those given in

verifying condition 2.4.8,
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E[h(S^.$
2 ;

£)|S^ = sj = 2P{(u-E 2) > 0, (v-E^) > O}

+ 2P{(u-E2) < 0, (v-E‘) < 0} - i

= 2H^(u)H2(v) + 2[1-H^(u)][1-H2(v)] - 1,

where H
2
(‘) (H 2

(*)) is the distribution function of E(e').

= 4 / / { 4Hf(u)Hp(v) + 4[1-H,(u)]^[l-H,(v)]^
0 0

^ ^

+1+8 H^(u)H2(v)[l-H^(u)j[l-H2(v)] - 4H^(u)H2(v)

- 4[1 -H^(u)][1-H2(v)]} dH^(u)dH2(v) .

The above expression contains four types of terms:

1 1

(i) If Hf(u)H^(v)dH.(u)dH.(v) = 4-H^(u)
0 0

1 1

(ii) / / [1-H, (u)]‘^[l-H
5 (v)j'^dH, (u)dH,(v) =

0 0
^ ^

= |- [l-H^(u)]^ [1-H2(v)]'
9

11
(iii) II [H. (u)-Hf(u)j[H.(v)-H 5 (v)]dH, (u)dH„(v)

oo -*- ^ ^

1

=
[ jH^(u) - i-Hj(u)J1 u3,

[ 4h^(v) - iH^{v)]
I

0
^ ^ ^ ^

lo

Therefore,

36 ’

and
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(iv) // Hj^{u)H
2
(v)dHj^(u)dH

2
(v) =

-^
H^{u)H

2
(v)

1
i

0 0 0

* T

0 0

1 1

/ I [l-H^{Li)JLl-H2{v)]dH^(u)dH2(v) .

Therefore

= 4[4(i) + 4(|) + 1 + - 4(i) - 4(|)J = I
.

Conditions 2. 4. 5-2. 4. 9 are satisfied so that by Randies' theorem

(1982), under Hq

2.5 The Simulated Null Distribution of Under Normality

The tables in this section contain the empirical null

distributions of T^^ obtained by a Monte Carlo simulation study. This

and all other studies in subsequent chapters were performed on the

University of Florida IBM-3033 using Fortran. A copy of some main

programs and subroutines used in this work is given in the appendix.

In generating the distribution of T^ under the hypothesis of the

independence of E and £', we bear in mind that the distribution of T^

is free of the regression constants involved in the underlying linear

models (2.1.1), and of the location and scale parameters of X, E and
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E', as discussed in section 2.2. The simulated distribution of is

then obtained as follows: the IMSL subroutine GGNML is used to

generate 3n i.i.d. random variables from the standard normal

distribution. These are then divided into three groups of size n each

to yield X^, and E^, i = 1, 2, . . . , n, and the following models

are obtained

Y. = X. + E.
1 1 1

and

= X^. + E^. , i=l,2, . . . ,n .

From these models we obtain residual pairs in two ways: (i) by the

ordinary least squares (OLS) procedures, and (ii) by the least

absolute value (LAV) method. The LAV estimates of the regression

parameters were obtained by an algorithm given by Josvanger and

Sposito (1983). This algorithm is reproduced in the appendix. In

each of the two cases (the OLS and the LAV), the usual Kendall's tau

was calculated on the residuals. This process was repeated 10,000

times, and the frequency distributions for the different possible

values of the statistic were recorded. The empirical relative

frequency distributions of T^ for the two cases are given in Tables

2.1 and 2.2, respectively.
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Table 2.1

The Null Distribution of T^ {OLS fit)

For a given n, the entry in the table for the point x is a, the

empirical estimate of a=Pot(2^T^>x], where T^ is obtained from the

residuals of an OLS fit.

n

X 6 7 10 11 14 15 13 19

1 .4991 .5000 .5003 .5012 .4998 .4890 .5043 .5034
3 .3773 .3992 .4361 .4438 .4603 .4569 .4739 .4752
5 .2667 .3049 .3715 .3908 .4197 .4229 .4422 .4497
7 .1702 .2174 .3100 .3364 .3803 .3871 .4143 .4250
9 .0968 .1451 .2537 .2854 .3428 .3504 .3374 .3979

11 .0478 .0877 .2022 .2378 .3073 .3157 .3581 .3719
13 .0187 .0492 .1628 .1927 .2721 .2831 .3311 .3460
15 .0040 .0237 .1221 .1544 .2400 .2534 .3066 .3173
17 .0103 .0901 .1228 .2055 .2249 .2810 .2918
19 .0033 .0631 .0956 .1768 .1978 .2588 .2725
21 .0006 .0444 .0746 .1493 .1697 .2367 .2533
23 .0294 .0544 .1264 .1477 .2164 .2322
25 .0195 .0391 .1055 .1264 .1958 .2128
27 .0128 .0265 .0889 .1086 .1757 .1925
29 .0083 .0161 .0713 .0908 .1572 .1738
31 .0041 .0110 .0578 .0749 .1375 .1563
33 .0023 .0066 .0456 .0611 .1233 .1401
35 .0012 .0047 .0362 .0510 .1101 .1257
37 .0028 .0287 .0409 .0981 .1123
39 .0012 .0229 .0336 .0874 .0994
41 .0007 .0158 .0251 .0756 .0863
43 .0004 .0125 .0202 .0665 .0754
45 .0086 .0160 .0565 .0657
47 .0056 .0122 .0476 .0579
49 .0045 .0087 .0404 .0500
51 .0031 .0071 .0326 .0423
53 .0020 .0053 .0267 .0363
55 .0009 .0038 .0226 .0309
57 .0005 .0026 .0182 .0272
59 .0003 .0019 .0152 .0231
61 .0017 .0121 .0193
63 .0012 .0092 .0167



53

Table 2.1-contimjed.

n

X 6 7 10 11 14 15 18 19

65 .0008 .0071 .0135
67 .0052 .0109
69 .0042 .0093
71 .0029 .0082
73 .0021 .0064
75 .0016 .0054
77 .0013 .0044
79 .0011 .0040
81 .0010 .0029
83 .0008 .0023
85 .0007 .0021
87 .0018
89 .0011
91 .0008
93 .0007

X 4 5 8 9

0 .5867 .5785 .5482 .5434
2 .4089 .4299 .4620 .4648
4 .2503 .2809 .3703 .3922
6 .1056 .1630 .2907 .3190
8 .0000 .0751 .2241 .2550

10 .0229 .1596 .1965
12 .1091 .1460
14 .0701 .1063
16 .0420 .0717
18 .0239 .0468
20 .123 .0275
22 .0045 .0157
24 .0018 .0095
26 .0008 .0050
28 .0022
30 .0007
32

34

36

n

12 13 16 17 20

.5329 .5236 .5182 .5114 .5152

.4847 .4787 .4829 .4812 .4932

.4341 .4296 .4492 .4493 .4677
,3827 .3855 .4134 .4185 .4404
,3346 .3441 .3833 .3897 .4203
,2865 .3022 .3494 .3570 .3954
,2437 .2667 .3143 .3280 .3682
2069 .2296 .2844 .2961 .3463
1742 .1945 .2568 .2724 .3253
1413 .1616 .2298 .2482 .3020
1138 .1339 .2067 .2241 .2823
0884 .1070 .1823 .1999 .2606
0652 .0870 .1582 .1787 .2388
0504 .0709 .1380 .1597 .2218
0395 .0543 .1195 .1419 .2049
0293 .0424 .1025 .1244 .1868
0202 .0337 .0873 .1083 .1697
0142 .0260 .0759 .0949 .1537
0097 .0194 .0632 .0803 .1396
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Fable 2.1-continued.

X

38

40

42

44

46

48

50

52

54

56

58

60
62

64

66

68

70

72

74

76

78

80
82

84

86

88

90

92

94

96

98

n

12 13 16 17 20

,0072 .0136 .0518 .0691 .1253
,0048 .0089 .0434 .0599 .1117
0027 .0056 .0364 .0511 .1004
,0014 .0044 .0305 .0423 .0907
0009 .0028 .0240 .0347 .0789
0003 .0018 .0202 .0276 .0701

.0012 .0162 .0226 . 0625

.0006 .0134 .0182 .0546
.0103 .0152 .0469
.0076 .0120 .0416
.0060 .0094 .0371

.0048 .0076 .0326

.0039 .0059 .0283

.0033 .0043 .0241

.0019 .0033 .0205

.0016 .0025 .0169

.0014 .0023 .0141

.0010 .0016 .0120
.0011 .0098
.0006 .0086
.0004 .0067

.0052

.0038

.0033

.0023

.0019

.0017

.0016

.0011

.0010

.0009
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Table 2.2

The Mull Distribution of T^ (LAV fit)

For a given n, the entry in the table for the point x is a, the

empirical estimate of a=Pg[(2)T^>x], where T^ is obtained from the

residuals of an LAV fit.

n

X 6 7 10 11 14 15 18 19

1 .5208 .5038 .5072 .5097 .5041 .5072 .5044 .5015
3 .3766 .3930 .4349 .4458 .4641 .4672 .4741 .4742
5 .2499 .2958 .3724 .3903 .4193 .4299 .4439 .4467
7 .1528 .2081 .3103 .3338 .3735 .3936 .4156 .4212
9 .0938 .1381 .2506 .2836 .3323 .3579 .3888 .3955

11 .0559 .0844 .2010 .2323 .2957 .3214 .3589 .3692
13 .0263 .0493 .1554 .1895 .2633 .2890 .3344 .3460
15 .0057 .0259 .1163 .1547 .2298 .2595 .3073 .3214
17 .0000 .0121 .0878 .1176 .1988 .2296 .2816 .2966
19 .0037 .0612 .0888 .1693 .2021 .2562 .2753
21 .0009 .0414 .0642 .1441 .1757 .2332 .2522
23 .0000 .0277 .0465 .1201 .1541 .2120 .2304
25 .0182 .0323 .1002 .1308 .1921 .2099
27 .0110 .0230 .0829 .1086 .1707 .1896
29 .0061 .0159 .0685 .0892 .1510 .1695
31 .0029 .0095 .0548 .0759 .1357 .1540
33 .0017 .0052 .0434 .0617 .1224 .1367
35 .0009 .0036 .0339 .0501 .1082 .1200
37 .0005 .0020 .0246 .0416 .0944 .1069
39 .0004 .0014 .0180 .0326 .0810 .0955
41 .0005 .0128 .0260 .0697 .0829
43 .0004 .0093 .0197 .0593 .0734
45 .0002 .0065 .0162 .0496 .0648
47 .0000 .0042 .0127 .0413 .0564
49 .0028 .0093 .0351 .0495
51 .0022 .0070 .0284 .0420
53 .0017 .0055 .0242 .0353
55 .0011 .0036 .0194 .0289
57 .0008 .0030 .0154 .0246
59 .0005 .0021 .0129 .0201
61 .0004 .0017 .0094 .0172
63 .0003 .0011 .0077 .0142
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Table 2.2-continued .

n

X 6 7 10 11 14 15 18 19

65 .0007 .0059 .0122
67 .0001 .0046 .0107
69 .0001 .0034 .0091
71 .0024 .0076
73 .0019 .0062
75 .0015 .0053
77 .0012 .0045
79 .0008 .0035
81 .0007 .0029
83 .0007 .0019
85 .0003 .0015
87 .0001 .0010
89 .0000 .0008
91 .0006
93 .0004
95 .0003
97 .0003
99 .0003

n

X 4 5 8 9 12 13 16 17 20

0 .5652 .5887 .5417 .5362
2 .3976 .4258 .4511 .4620
4 .2805 .2801 .3604 .3911
6 .1269 .1617 .2823 .3161
8 .0000 .0882 .2106 .2493

10 .0312 .1440 .1928
12 .0000 .0971 .1421
14 .0607 .1037
16 .0360 .0700
18 .0211 .0455
20 .0112 .0295
22 .0061 .0185
24 .0029 .0099
26 .0007 .0052
28 .0000 .0031
30 .0016

.5267 .5245 .5089 .5157 .5170

.4776 .4769 .4768 .4829 .4935

.4236 .4329 .4416 .4509 .4674

.3754 .3868 .4117 .4236 .4407

.3211 .3394 .3758 .3909 .4161

.2746 .2991 .3459 .3588 .3916

.2372 .2600 .3134 .3285 .3687

.1984 .2246 .2827 .2990 .3455

.1628 .1916 .2555 .2708 .3230

.1339 .1599 .2276 .2458 .2997

.1106 .1333 .2029 .2219 .2795

.0893 .1060 .1812 .1995 .2618

.0686 .0863 .1554 .1798 .2427

.0514 .0691 .1354 .1590 .2225

.0373 .0539 .1173 .1418 .2020

.0259 .0421 .1001 .1246 .1832
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Table 2.2-continued.

X

32

34

36

38

40

42

44

46

48

50

52

54
56

58

60

62

64

66

68

70

72

74

76

73

80

82

84

86

38

90

92

94

96

98

100

102

104

106

108

9

.0008

.0003

n

12 13 16 17 20

.0182 .0327 .0855 .1097 .1671

.0129 .0236 .0702 .0967 .1490

.0083 .0177 .0581 .0838 .1365

.0055 .0139 .0489 .0737 .1241

.0034 .0103 .0403 .0631 .1114

.0018 .0073 .0332 .0543 .1002

.0013 .0051 .0270 .0453 .0869

.0006 .0036 .0206 .0385 .0760

.0003 .0023 .0169 .0312 .0674

.0001 .0017 .0129 .0256 .0589
.0010 .0104 .0217 .0516
.0005 .0083 .0167 .0437
.0004 .0061 .0126 .0387
.0003 .0043 .0093 .0349

.0038 .0070 .0308

.0026 .0052 .0278

.0024 .0039 .0245

.0017 .0023 .0212

.0014 .0023 .0173

.0010 .0019 .0144

.0005 .0013 .0113

.0003 .0012 .0092
.0007 .0073
.0006 .0059
.0004 .0046
.0003 .0035

.0029

.0021

.0021

.0017

.0015

.0014

.0011

.0010

.0010

.0009

.0005

.0005

.0002



CHAPTER THREE

THE ASYMPTOTIC EFFICIENCY OF T. RELATIVE TO THE
PEARSON PARTIAL CORRELATION COEFFICIENT

3.1 Introduction

When investigating the performance of statistical tests for

independence, the researcher is faced with the crucial problem of

specifying an appropriate class of alternatives which is (i)

sufficiently wide to encompass a large variety of situations, and (ii)

is mathematically manageable. In our setting, this problem is further

complicated by the presence of the slope estimators which induce

dependence among the residual pairs (L)^., ), i = 1, 2, . . . , n. To

attain maximum generality and at the same time keep our investigation

mathematically manageable, we adopt the "trivariate reduction" model

for the errors. This is the model recommended by Hajek and Sidak

(1967) for parametrizing the class of alternatives to the hypothesis

of independence. Similar models were also considered by Konijn (1956)

and Shirahata (1977).

The class of alternatives is constructed as follows:

let E. = W. . + AW„.
1 ll 3i

and

^ *
^^3i

’ 1=1. 2,..., n.

58
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where {W
2 -j}

and i = i, 2, . . . , n are three

independent random samples of continuous random variables. The

hypothesis that E^- and are independent is equivalent to the

hypothesis that A = 0, so that the test is equivalently given by

Hg : A = 0 versus : A 0 .

To study the Pitman asymptotic relative efficiency (ARE), we will

further suppose that A^ is a sequence of parameters converging to

the null hypothesis value, i.e., limA = 0 .

n

In section 3.2, we give a main result which ensures the

asymptotic normality of a U-statistic with an estimated parameter

under a sequence of alternatives converging to the null hypothesis.

In section 3.3, we shall apply the results of section 3.2 to obtain

the asymptotic normality of T^, and in section 3.4 we derive the

asymptotic distribution of the partial correlation coefficient, R^.

Section 3.5 contains the applications of a theorem by Noether, by

which an expression for the asymptotic efficiency of T^ relative to R^,

is obtained. A table of ARE's calculated for several underlying

distributions is given at the end of section 3.5.

3.2 The Asymptotic Normality of a U-statistic with an
Estimated Parameter Under a Sequence of Alternatives

The main result in this section is an extension of a theorem by

Randles (1982) which involves a generalization of a result given by

Sukhatme (1958). Randles' theorem is slightly modified to apply to

the more general case where the U-statistic, U , and its moments are
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functions of the sample size, n, through the observations Xi.„, Xo,_,

. . . , whose distribution in turn depends on n perhaps through

a sequence of parameters A^.

Let Xj^.^, X2.f^, . . . , X^.^ denote a random sample from some

distribution with distribution function FpCx), possibly changing as n

changes, and let h(xj^, . . . , x^; y) denote a symmetric kernel of

degree r with expected value

r:n’
Y)]

where 8 denotes a P-dimensional parameter value, and y is, in

general, a mathematical variable. Both the kernel and its expected

value may depend on y, and on n through X, , . . . , X
,

. The

corresponding U-statistic is then

U (Y)
n ~ = 4- I

aeA(")
r

:n’
1 r

(3.2.1)

where A denotes the collection of all subsets of size r from the set

of integers {l, 2, . . . , n}. The main result of this section gives

the asymptotic normality of

- e^(s)] ,
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where 3 is an estimator of the parameter 3 . The key step in the

proof of the main result requires that

.1/2,n-'-[U^(3) - 0„(3) - U^(3) + 0„(6)] 0 , as n-^n~ n~ n~ n~ (3.2.2)

The proof of (3.2.2) is given in theorem 3.2.8, but first we prove a

lemma and list the conditions needed for the proof of 3.2.2.

Lemma 3.2.3

Let X, , , . . . , X be i.i.d. random variables whose
• n • n m • n

distribution may depend on n. Suppose • • • »

satisifies

(i) for every n , and

(ii) X^.„))2]=0.
n-x»

then

^n
'

,n.^n^~a.:n’* *’*’ la :n
(^) aeA 1 r
r ~

P

-»• 0, as

where A is as defined earlier.

Proof. Write

E[U^] VarCU^] — I
(")("")

(H) c r-c c,n
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where

^c.n " ~r:n^‘^n^~l;n’*"*~c:n’~r+l:n’
,X

2r-c:n )].

(see, for example, Randles and Wolfe, 1979, p. 65). Also, it has been

shown that, for fixed n.

r.
fOr C = 1,2, ...,r ,

C f 1 1 I j ll

with

V.n
= ^ '

Now, define by

K = (rl)^

c![(r-c)!]^
’

so that each term in the above sum involves

|, (n-r)(n-r-l) ... (n-2r+c+l)
n(n-l) ... (n-r+1)

**

0,0

. u (n-r)(n-r-l) ... (n-2r+c+l)

c * n(n-l) ... (n-r+1) ^r,n
*

Note that the numerator involves (r-c) factors of n, whereas the

denominator involves r such factors, so that for each c = 1, 2,

_ (5

. . . , r, the coefficient of
^

is 0(n ), 6>i, and therefore, from

(ii), each term in the sum goes to zero, as n goes to infinity. It
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follows that, as n approaches infinity, E[U^] goes to zero, and,

therefore, converges in probability to zero.

Condition 3.2.4 Suppose

V2
n (e - 6) = 0^(1) as n>® .~ ~ p

Condition 3.2.5 Suppose there is a neighborhood of 3 , say K(s),

and a positive constant such that if yeK(3) and 0(y,d) is a sphere

centered at y with radius d satisfying 0(Y,d)CII K(s), then, for every

E[ Sup

Y'£D(T.d)

h(X
l:n’

..,X
r:n

)-h(X
l:n’*“’ V:n- i '^1“ (3.2.6)

and

lim £[ Sup |h(X. ,...,X ; Y')-h(X. ,...,X • y)|^J = 0

d-^0 Y'eD(Y.d)
~ ^ ~

(3.2.7)

uniformly in n. That is, for every e‘>0 and every n, there exists a

positive constant D* such that for 0<d<D' and D(Y,d) K(s),

E[ Sup

Y'eD(Y,d)
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THEOREM 3.2.8

Under conditions 3.2.4 and 3.2.5,

n (6) - 9 (6) - U (6) + 9 (3)] 0 , as n-*-® .
j] ^ ri'^

PROOF. Let

» t) “ H(x,,..., X , y) ~ 9 (y)iix f/w X

SO that

“n>X> W =4- I ChnlX X, y)J ,,n > ‘"n '"a, :n

'

aeA 1
r ~

a :n’ ~
r

where A denotes the collection of all subsets of r integers from

{l, 2, . . . , n}. Then,

1/2

n [U ( 0 )
- 0 ( 0 )

- U ( 0 ) + 0 ( 0 )]

V2

(;) aeA

V2 -I
/2

?TaL = = 'n(\:n— \:n* •
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'' * 1/2 ''

Denote the above expression by where s = n (£-£). Mow take £

and to be arbitrary constants. By Condition 3.2.4, n^^^( 6- 6 )=o ( 1 )~ ~ p

so that we can find a sphere C in centered at the origin, such that

P[n (£ £) ^ C] < Y • every n (3.2.9)

Then,

Vz
P[|Q„(n (6 - £))| > ej

V2 ^ V2 ''

= P[|Q„(n (8 - 8 ))| > e
, n (6 - 8 )

e C]
f|

rwr ' fs* rsf

V2 - V2 «

+ PLlQ„(n (S - 8 ))| > e
, n (8 - 8 ) ^ C]

V2 - V2 - V2 -

< P[lQ^(n (S - 6 ))| > e
, n {£ - 6

)
e CJ + P[n (£ “ £) ^ C]

V2 -

< P[Sup
I Q (s)

I

> e] + P[n (8 - 8 ) ^ C] .

sec
" ~ ~ ~

It suffices to show that

PCSup
I Q (s)

I

> e] -> 0 as n>“ ,

sec "

where e and C are fixed.

Let C|^, u = 1, Z, . . . , U denote a finite collection of open

spheres centered at s.. with radii iiC 11 < for every~u u - 8K 1
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u = 1, 2, . . . , U, such that (J C ID C. Now,

u
^

V?
V?

\
n ^ •n****'^a •n****’^rt •n’^^'^

( '
)

n . n a^ . n ~ ~ n . n a^ . n ~ ~u

Vz
-1/2

+ ^^^7
I ....... X ,„;

(^) aeA
^ ~ ~u n Oj^in’ ’ a^:n’

3)]

^
^n.u^E^

^
Qn.o^lu^

•

Also note that

U

P[Sup
I Q (s)

I

> e] < \ PCSup
1 Q (s)

|
> e] ,

SeC
" ~

u=l seC„
" ~

Li

since

{Sup
1 Q (s)

1
> e} => {Sup

I
Q„(s)

|

> e} for
SeC

" ~ seC
" ~

^ u

some u - 1, 2, . . . , U. It suffices then to show that each term in

the above finite sum converges to zero, as n-»-<». But,
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PCSup
i Q (s)

I
> e] = P[Sup

I
(s) + (s )

|

> e]
II /s/ ^ r' iljU^ iIjO

i I Q„_,U)
I >f]*P[| Q„_„(s^)

I >f] .

We shall next apply Lemma 3.2.3 to show that each of the probabilities

on the right hand side of the above inequality converges to zero.

First consider

^n,o^£u^
1

^^2

I n [ff (X
.

..,

(") aeA
" “r"

I /s»

-1/2

..X 8+n s„)
. n ^ Ui

X
; b)J

>' a]^*n Oy.*'' ~

Applying lemma 3.2.3 with

V2 - V2
l<n(*) = n g+n s^^) - . . . ,X^.^; g)j ,

shows Q „(s ) + 0, provided we can show that
n ) u u

-
1/2

lim Et{^n^^l;n’“-’V:n’ £u^
"

^n^^l:n’
*

‘-’^rm’ £^1^-* " ^
n-H*>

But
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{h^(Xi;n.....X^:n; s+n sj -
• * *

* V:n*

-
1/2 - V2

“
V;n- £*" £u'

'

- £* *

- I/2

{h{Xi:n,...,X^:n; S+n - h(X^.^,...,X^.^; £)

2- [0„(6+n s„) - e (3)]}^
II ^>^14 n

. 1/2

< 2 [ti(X^.^,...,X^.^; s+n - ^(X^.^, . . . ,X^.^ ; 3)]^

- 1/2

+ 2 [ 0^( e+n s ^) - 9^( s )]^

Taking expectations, we have

- V?

^i^^^n^^lin’-'-’Vin’ £u^
"

^n^^l:n’
’ • *

’^r:n’

- I/2

< 2E{[h(X^.|^,...,X^.^; 3+n s^) - n(X^.^, . . . ,X^.^; s)J^}

- I/2

+ 2[0 (s+n s ) - 0_(s)j^
* • 1

1

< "^^n>i(X^.^,....X^.^; s+n - ^i(X^.^, . . . ,X^.^ ; 3) i ]
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- V2
< 4E[Sup lh(X^ ; g+n s)

C
r.n ~

Z ''u

—V : n
‘ ‘

^

which goes to zero, as n goes to infinity by (3.2.7) of condition

3.2.5. Here we use the fact that

^2 - V2 - V2
2eU

IIS + n s - Sii = Bn sii < 2n UiiCuii < - ^
/s/ ^

8K^n
^^2

Next we examine

Sup IQ (s)|

SeC..
~

V2
Sup
seC
~ u

n
- 1/2

n
’ I tj*

(") aeA
^ “r" “r‘"

~

-I
/2

n ou • n M • n ~ ~U

< I Sup n

r) aeA seC
r ~ ~ u

V2 -V2

-
1/2

^n^^a^:n’'-*’^c^:n’ !u^



"4“ I
( ) aeA SsC

I ^ u

fT (X

-1/2

n : ir
•.X ; 8+n s)

Ct^ • 1 1 ^
r

-
1/2

“ .|-»*»*»X .1 3^n s )
n • n c(^ • n

- E[Sup
SeC

u

h (X
n : n

V2

\
+ n E {Sup

SeC.

-
1/2

- V2

^cy:n’ lu^

= D. +
In 2n

Now,

D
2n

V2
n E[Sup fT{X

a^:n’

- (^(X

«1 :n » • • • »
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V2
n E[Sup

seC

h(X

-I/2

a^:n*

'

V2
.X ;S+n s )a . n ~ ~u

r

-
1/2 - V2

- 0 (8+n s) + 0„(3+n s.,)

V2
n E[Sup

sec.

h(X

-I/2 - 1
./2

V2
+ n Sup

seC
~ u

-
1/2

-
1/2

Q^(8+n s) iul

V2
n E[Sup

sec.

-
1/2

;n’****^a
i r i

- V2
,X ._;3+n s )a n ~ ~u

r

V2
+ n Sup

see

-I/2 _l/2

;n***”^a
i r 1 r

V2
< 2n E[Sup h(X

sec, ' “r"’~ u

-I/2 -1/2

•*^a •n’£'*’"
s)-h(X ,...,X ._;8+n s )

.ri'^ cii.n ct.ri''' mj
r 1 r

1/2 - 1/2

< 2n K, nc,» n = 2K, IIC « < -r byiU iU“4

(3.2.6) of Condition 3.2.5, the definition of Cjj, and
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+ n

-1/2

S - 0

- I/2

n s II

- \ - V2
n Us - s II < n iiC n .~ ~u u

Next consider and apply lemma 3.2.3 with

K (.)
n

V2
= n {[Sup

seC.
hn(Xi:n...-,X^;n;£+n s)-h^(X^.^,...,X^.^;£+n s^^)

- E[Sup
SeC

u

n l:n
• • •

.I/2

^ n 1 • n r:n
;8+n

Now,

1

n
E[fl( (X,

I n l:n

E {Sup |^n(X^.^,...,X^.^;8+n £)-f>n(Xi.n..-..X^.^;8+n s^^)

E[Sup
SeC

"n‘Xl:n' • »X i0+n
(•II ^

-I
/2 -I

/2

£u^

< E [Sup

ScC

~ “ V2 - V2
^^^l:n***-*V:n’£''" £^'^n^^l;n’*

* *
* V:n»S^'’ £u^
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< 2E [Sup
sec.

- V?

h(Xi:n....,X^:^;3+n
~u^

+ 2 Sup
sec

\
( ^+n s

)

n ~ ~
\

9 (^+n s,,)
n ~ ~u

< 4E [Sup
see
~ u

h(Xi;n..

- 1/p -1/2

*• 0 , as n ^ 3 by (3.2.7) of Condition 3.2.5 and since

n ^2
II Q II - 0 , as n "

.

Thus far, we have shown that under the Conditions 3.2.4 and 3.2.5

Vz
n [U^(8) - 0^(6) - U (3) + 0 (S)] > 0 . as n>» .n~ n~ n~ n~

The main result of this section is given in the next theorem

which yields the limiting distribution of

n [U (3) - 0 (8)J .
11 '^ n ^

THEOREM 3.2.10

Suppose that ®_(t) is uniformly (in n) differentiable at y = 3
I * /W

and that this differential is zero. Suppose further that the

conditions of Theorem 3.2.8 are satisfied. If, in addition.
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1/2 d
2

n [d„(S) - 9_(3)] N(0,t^) , as , (3.2.11)
\] ^ 11'*-

2
with T > 0 , then

1/2 - d

n [U (S) - 0 (6)] ^ N(0 ,t^) .
n ~ n ~

PROOF. Note that

1/2

n [U (6) - 0 (3)]

1/2

= n [U (S) - 0_(3) - U (0) + 0„(3)]ii^ ii'^ M'- ri'-

1/2

+ n [U (8) - 0 (0) - 0 (0) + 0 ( 0 )]ri'- ]\ ^ M'-- H'-

1/2 1/2

= n [U (3) - 0 (8)J + n [0 (3) - 0 (3)] + 0 (1) .n~ n~ n~ n~ p

since by Theorem 3.2.3

1/2^^ P

n [U (0) - 0 ( 0 )
- U^(0) + 0 ( 0 )] > 0 . as n-K- .n~ n~ n~ n~

Then, by Slutsky's theorem,

I/2
^ I/2

n Cd ( 0 )
- 0 ( 0 )] and n [ 0 ^( 0 )

- 0„(0)]n~ n~ n~ n~

have the same limiting distribution, provided that we can show that
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n [9^(8) - 9^(8)] = 0^(1) . (3.2.12)
n ~ n ~ p

We show below that this follows from the fact that uniformly

differentiable at y = S, and that this differential is zero at y =
fs» /V/

8. By definition (see, for example, Serfling, 1980, p. 45), 0-(y) is
rsd ^

uniformly (in n) differentiable at Y = 3 if for every n. (9©„)/(3y,- ),

i = 1, 2, . . . , p, all exist and if, in addition, the differential

function

39
II

3Yi

satisfies the property that for every e>0, there exists a neighborhood

W-(8) of 8 and an WJ such that for every yeN^( 8) ana for n>d*

3n^^)
- My. -3.)

n ~ n ~ 11
39

n_
< e llY - 611

Y = 3

Now since
9^^

admits a zero differential at y = 3, and since it is

uniformly (in n) differentiable at y = 3 we have that for every e>0

there exists N (8), a neighborhood of 8, and N* such that

9„(y) - 9^(8)
n ~ n ~

< e lly - 811 ,“ /s#

Whenever yeN (3) and n>N*. It follows that for s in N (s), and n>N*
~ e ~ e
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n 9_(6) - 0 (6)
n n

\ -

en 116 - 011 .
/N^ r\j

Also, by Condition 3.2.4,

1/2

n (6 - 8) = 0^(1)

which implies that

Vz
n 116 - 611 = 0 (1)~ ~ D

since

Vz
n

V2 P ^ 2
n [ I (6. -

i=l
^ ^

Vz

p 1/2

< 1 I
n (6-6)1,

i=l
’ ^

and since a finite sum of Op(D variables is Op{l). By (3.2

know that for every 6>0 there exists Mg>0 such that

Vz
P {n 116 - 811 > M^} <6 ,

for every n. Now, to show (3.2.12) we need to show that for

e*>0 and every 6*>0, there exists an N such that

(3.2.13)

(3.2.14)

.14), we

(3.2.15)

every
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Vz
P {n “

I

e^(£) - 0^(£) I

> £*} < 6 ,

whenever n > N.

Take 6 = 6*/2 and let e = where is defined by (3.2.15).

By (3.2.13) we know that there exists a neighborhood of £ with radius

ic
^

dg, and there exists an such that n>Ng and »8 - £“<dg imply

V2 - e* V2 -

n
I
0„(^) - 0„(0)

I
< T-n 113 - 011 .

Choose so that n>N]^ implies

P {iis - gu > dJ < I- .~ ~ £ 2

(Note that the choice of such an n is possible since

1/2 -

n ii£ “311= Op(l)). Combining the above observations we see that

for every e*>0, every 3*>0 and for n>N = max(N*,N,),
^ 1

V2
P in

I 9„(8) - 0^(8) I

> C*1

= P in
I
e^(6) - e^(8)

I
> €*

, 118 - 81 >

V?
+ P {n

I

e^(£) - 9^(£) I

> £*
,

U£ - 311 < dg,}
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* 1/2 ^

< 4- + P {n
1

e (6) - 0 (3)
I

> e*
, 116 - 311 < d I

c n~ n~ ^ - z

\ -
5
* *

< o— + P {4- n IIS - Sil > £*}-2 Mg

6
* ^^2

^ t P { n 16 - 61 > M
5 }

f.'k
0 6 *

<-
2
- + -

2
“= <5

.

V2
which implies that n

REMARK 3.2.16

Although the above results deal with a random sample of

observations from a univariate distribution, they remain valid when

~l-n’
* * * * ~n*n

multivariate population.

REMARK 3.2.17

A difficult step in applying theorem 3.2.10 is verifying (3.2.7)

of Condition 3.2.5. However, if one can show that there exists an

M ]^>0 such that

h(X, ,...,X
l:n r:n V:n= I

(3.2.13)

for all Y in some neighborhood of S, and every X, , .... X~ ~ j l:n* * r:n

then (3.2.6) implies (3.2.7). To see this note that
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Y‘eD(Y,d)
'^•'^ ~ ~

/V#

E[{ Sup
I ^ • n

* * * *
*^r* n*

^ ^
~ ^^^1 • n* * * * *^r* n * J

Y eO(Y,d)
~ ^ ^ ~

< M^E[ Sup |h(Xi ,...,X : y‘) - h(X, ...,X ; S)l]
Y eO(Y,d)

~ ~
^ /w

< M^K^d

which goes to zero as d+0 by (3.2.6),

3.3 The Asymptotic jiormality of !„ Under a

Sequence of Alternatives
A A A

The statistic T^ involves the estimator B = (Bj^. 62
)' of

S = ( 62^, 32 )'* so that to apply theorem 3.2.10 we need first to obtain

V?
the asymptotic normality of n CT„( 3 )

- e„( 3 )] under a sequence of

alternatives, i.e., we need the asymptotic normality of the statistic

involving the parameter value S rather than its estimate 3 . To this

end, we shall apply theorem 5.3.10, and lemmas 5.3.11 and 5.3.13 of

Randles and Wolfe (1979).

Using the "tri variate reduction" method, we may write

E. = W, . + AW 3 .

1 ll 3i

E; = ^
^^3i

’ 1
= 1 . 2 . ...,n ,

and
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so that our underlying linear models are given by

Yi
= + AW^^- , and

^i
^

“2 ®2^i '"^Zi ^'^3i
’ i=1.2,...,n ,

and the hypothesis of independence of E^- and E], i = 1, 2, . . . , n,

is equivalent to the hypothesis A = 0. To establish the results of

this section, we need the following assumptions:

3.3.1 {W2-j} and i = 1, 2, . . . , n, are three

independent random samples of random variables with absolutely

continuous distribution functions G]^{.), G2(.) and G3(.),

respectively.

2»3.2 The variables T|^ = - Wj^2 have distribution functions

F|^(.) and bounded and continuous density functions f|^(.), k = 1, 2, 3.

2.3.3 The variable has a finite first moment.

~l:n*
* • • * £n'n

^ random sample from some

trivariate distribution with distribution function G^{.,.,.) depending

on n, where

X.
1

S.
~i :n

W,. + A W
li n 3i

(3.3.4)

W„, + A W,.
2i n 3i

The symmetric kernel of degree r=2 is then given by
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[(W2i"'<22*'^‘'n''^3l''^32*’*^2"*2**’'i'*2*^^

where is a sequence of parameters depending on n with 0, as

3 _ is a fixed parameter and Y = ^

mathematical variable.

The kernel may be rewritten as

>'<Sl:a-52:.: V = Sgn

•LT2+An'’’3'^^2‘^2^^^r^2^^^ ’

and the corresponding U-statistic is

^n^~^ ^n^~l:n**”’~n:n’

= 4- I

(

3
) i<j

^^~i:n*~j: n’ 1 )

To obtain the asymptotic distribution of T„(3), we first need to find

its mean and its limiting variance, which we shall do next. Note that

®„(£) = E[T„(6)]

= E[Sgn([Tj.i„T3][T2*n^3]l]



82

= Tjj > 0}

- HLTj*AJ33[T2.V3J < 0)

= PlT3.i„T3 > 0, TjtAJj > Ol

* PlTj+Vs ^ “ ^ “1

-
"tTl^^nTa > “> < Ol

-
'“(Tl-Vs < “• T2*‘'nT3 > Ol

= 2P{JM1^ > 0. T„+A > o}
X n 0 w n o

* 2P|Ti*V3 ^ “ ^2"V3 ^ 1

% '2tl-F3(-V3)J[l-F2(-V3»2Fll-^T3)F3(-V3)-lt (3.3.5)

where Ey denotes expectation with respect to the random variable T-..

3
^

2
The asymptotic variance of T (8) is n = lim r with

~ n-Kx.

and

^ ^
*-*^^~»~2:n’ ^ ~l;n

""

The limiting variance, n, will be obtained as a result of applying

theorem 5.3.10 of Randles and Wolfe (1979), for which we only need

the quantity h, (s). We see that
X • n
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h, (s) = E [h(s,S
2 . : B)

1 . n ^ n ^ -l:n

£[Sgn{[(W^^-Wj^2^‘^^n^'^3l"^32^^*-^’^2r^22^'*’^n^'‘^3l”^32^^lEl:n"

= ^•^^9n{[e^-W^2"V32^^®n“'^22‘V32^^^

= 2P{e^-Wj^2"V32 ^
®n"'^22’V32

^

+ 2P{e^-W^2’V32 °*
®n~'^22‘V32

^ ^

Eu {2G, (e -A W^^)G„(e '-A W^„)
W
^2

Inn 32 2 n n 32

. 2[l-G^(e„-Y32)J[l-G2(e‘-A„W32)] -1} (3.3.6)

where 6j^(.) [G
2
(.)] is the distribution function of W^2t'^22^

*

®n '^l^^n'^3 ^'^2^^n'^3^
'^1* '^2 '^3

given values of and

Next, we verify the conditions of theorem 5.3.10 of Randles and

Wolfe. Condition (i) is immediate, since

^*-^^^~l:n’~2:n^^
= 1 , for every n > 2 . (3.3.7)

Conditions (ii) and (iii) hold, if the conditions of lemmas 5.3.11 and

5.3.13 are satisfied. Lemma 5.3.11 follows from (3.3.7) with M = 1.

There remains to verify conditions (i) - (iv) of lemma 5.3.13.

Condition (i): We need to show that there exists a real valued
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function k(s) such that

lim hi,„(s) = k(s) for every x .

n>oo
~ ~ ~

But from (3.3.5), and for every s = (x,e ,e‘)‘,~ n n

Tim h, „(s)
M \ m i • n ^
n-H»

= lim E,. {2G.(e -4 W.,.)G„(e‘-A W.,,)

n-Hx) ^22 1 n n 32 2 n n 32

2Gj^(Wj^)G2(w2) + 2[1-Gj^{Wj^)][1-G2(w2) J ~ 1

= k(s) ,

because by the Lebesgue Dominated Convergence Theorem the limit may be

passed inside the expected value, since Gj^(.) and G
2 (.) are absolutely

continuous distribution functions, and

lim
n-Ko

w. and lim e! =

Condition (ii) : Let G (s) denote the distribution function of S.
n ~ ~i:n

We will show that there exists a distribution function G(s) such that

lim G (s) = G(s) for every s ,
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but this is immediate since -*• 0, as n +«>, and, therefore.

^ :n

X.
1

“li ^ V31

W,. + 1 W,.
2i n 3i

converges in probability and in law to S^.

X.
1

W

li

2i

Here G(s) is the distribution of S . , i = 1, 2, . . . , n.
/V»*|

Condition (iii) : We need to show there exists an M* such that

|h, (s)| < M* for every x, and every n > 2. 3ut from the definition
i . n ~ ~ “

of the kernel h(.,.), for every s and every n > 2

E [h(s,S. : 8)
I
S,.„ = s]~ ~i.n ~ ~i:n ~

< 1 .

and Condition (iii) holds with any M* > 1.

Condition (iv): To find E(k^{S)], where S is a random variable with

distribution function G(s), recall that

k(s) = 2G^(w^)G
2
(w

2
) + 2 C 1 -G^(w^)][ 1 -G

2
(w

2
)J - 1 .
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so that

^ 4G^(Wj^)G2(w2) + 4[1-Gj^(Wj^)]^[1-G2(w2)]^ + 1 ,

+ 8G^(w^)G2(w2)[1-G^{w^)][1-G2(w 2)] - 4G^(w^)G2(w2)

- 4[1-G^(w^)][1-G2(w2)J .

Also note that

E[lc^{S)] = E[k^(W^^.W
2i)^

= / / k^(Wj^,W2) ^

= / / k (w^,W
2

) d G^(Wj^) d ^2(1^2) ,

since and X are independent. Further,

/ G^(Wj^)dGj^(Wj^) = / G2(w2)dG2(w2) =
"J

.

/ [l-G^(w^)]^dG^(w^) = / [l-G2(w2)]^dG2(w2) = j.

/ G^(w^)[l-G^(w^)]dG^(w^) = / G2(w2)Cl-G2(w2)]dG2(w2) =
-^

.

and

/ G^(w^)dG^(w^) = / G2(w2)dG2(w2) = ^ .

and therefore
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E[k (S)] 1 3^ ~l~l=-^<oo.

Thus, the conditions of lemma 5.3.13 are satisfied, and the limiting

variance of T (s) is
n ~

n = r^Var[k{S)] = 4£[k^(S)] = ^ ,
/V* /Nrf J

since

E[k(S)] = //[2G^(w^)G2(w2)+2[l-G^(w^)j[l-G2(w2)j-l]dG^(w^)dG2(w2)

= 0 .

Thus we have verified all the conditions of Theorem 5.3.10 in Randles

and Wolfe (1979). We have thus proved the following.

THEOREM 3.3.8

Under conditions 3.3.1 - 3.3.3,

^/2 cl

n [T^(b) - QpU)] - N( 0 ,j)

where 0„(s) is given in (3.3.5).
n

A JK

Let 6 = ( 3 ^, 62
)' be an estimator of 3 = ( 3 ^, 32

)'. We shall

apply our Theorem 3.2.10 to obtain the asymptotic normality of

^2
n [T„(j) - e„(£)]

under a sequence of alternatives approaching the null. To that
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effect, we need first to verify the conditions of Theorem 3.2.8.

Condition 3.2.4 is discussed under Condition 2.4.5 of the previous

chapter. Also by remark 3.2.17, step (3.2.7) of Condition 3.2.5 holds

if (3.2.6) and (3.2.18) are satisfied. But, from the definition of

the kernel h(.), (3.2.18) is immediate with = 2. There remains to

prove step (3.2.6) of Condition 3.2.5, i.e., we need to show that

there exists a constant K 2^>0 such that for every n.

Sup
I ^ ^ t)|J 5 •

I IN/ l\ ^ ^ J.

Y sO(Y,d)

The proof of this step is identical to that given in verifying

Condition 2.4.6., except that here Kj^(.) [kj^(.)J and K
2 (.) [k

2 (.)]

denote the distribution functions (density functions) of

and

^l“^2

respectively.

Thus, the conditions of theorem 3.2.8 hold, and to apply theorem

3.2.10 we only need to show that (i) for every n,
9f,(y)

has a zero

differential at y = S, and that (ii) 9n(y) is uniformly (in n)

differentiable at y = s. Using the notation developed above, we have.

=
^s^'’<£l:n-£2:n

; y)J

= P{[T^+A^T3-(y^-s^)(X^-X2)J[T2+aJ3-(y2-82)(Xi-X2)] > 0}

‘'{^Ti''V3'^Xi-8i)(X^-X2)][T2+A^T3-(y2-82)(Xi-X2)J < 0}
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= 2P{T^+A^T
3-(Yi-

8 i)(X^-X
2
)>0 . T

2
+A^T

3
-(

Y

2
-
82 ) (X

3
-X

2
)>0

}

+ 2P{T3+aJ3-(y^-6^)(X3-X2)<0, T2+A^T3-{

Y

2
-S

2
) (X^-X^XO}

- 1 .

Conditioning on X^ and T
3

, and using the independence of and

X, we can write, with 5.(y) = (Y-- 8 . )(Xi-X„), i = 1, 2,^ 1 'v 1 1 i ^

+ 2P[T3<b3(y)-4^t3]P[T3<b3(Y)-i,t3]

= E

^
1

^
1

* ^2 ~ ^2* ^3 ^3 ^

X1.X2.T3 |2[l-Fi(bi(x)-i„t3)][l-F2(b2(T)-i„t3)]

" 2l^llbl(T)-i„t3)F2(b2(x)-b„t3)

” 1
I

~ ^
2

* X
2

~ X
2

» T
3 ~ 1 (3.3.9)

“ X TA
3
.A

2
.I

3

{J(X3.X2.T3; y)} .

3y Conditions 3.3.2 and 3.3.4 we can pass differentiation with respect

to Y inside the expectation to obtain
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3y Xj^,X2,T2

3j(x^.X2.r3; y)

3^^

Differentiating first with respect to y^, we have

3J( . ; y)

= 2{x^-X2)f^(b^(Y)-A^t3)[l-2F2(b2(Y)-A^t3)]

which, when evaluated at y = 3, gives

Similarly,

3J(.; y)
/V

2(x^-X2)f2(-A^t3)[l-2F^(-A^t3)] .

Each of the above two expressions has a zero expectation with respect

to X, and X^, so that, for every n, q

A

y) has a zero differential at

Y = 3.

To show that Q (y) is uniformly (in n) differentiable at y = 3.

we need to show that for every e>0 there exists N^(3), a neighborhood

of 3, and ii* such that for n>N*,~ e e’

|0.(y) -
0n(3)| < e IlY - 311 .



To establish this, we use the following lemma which follows

immediately by the Lebesque Dominated Convergence Theorem.

LEMMA 3.3.10

91

Let V denote some random variable (not necessarily independent of

and X
2 ). If E[|X^-X

2 l]<“, then

{IX
1
-X

2 I
|2F(AV)-1|} > 0 as A^O,

where F is an absolutely continuous distribution function with F(0)=

V2 •

Now, from (3.3.5) and (3.3.9)

9
„(£) = E

and

W = Exj.X3.T3 {2Cl-El<^rV3'^tE-E2<‘>2-''nT3>J

* 2Fj(bj-i„T3)F3(b2-V3) - U .

Where b^. = (y^.-8^. )(X^-X
2
), i = 1, 2.

It follows that
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0 (Y) - 0 (S)
n ~ n ~

= E
X^.X^.Tj f2[l-flOrV3)Kl-F2(b2-V3)J

* 2Fllbi-V3>F2‘'=2-V3>

2[l-Fi(-i„T3)]Ll-F2(-V3)J

2F (-4 T )F (-4 TJ .

1 n 0 2 no

Subtracting, then adding the quantities

and

2[1-F^(bi-4J3)JU-F3(-4J3)J

2F (b,-4 T )F (-4 T
)

i 1 n o 2 no

and combining terms, we obtain

9 (Y) - 0(B)
n ~ n ~

= l2Cf2">2-V3>-'^2‘-‘nT3'JC2F3(b3-4j3

*2CFj(b3-4^T3)-Fj(-4j3)J[2F3(-4^T3

Xj.Xj.Tj 1*^11 *
^X^.Xj.Tj (‘^

2 !
H E

where and are the two terms in the above expectation.

Taylor's expansion, we have

)-lJ

)-l]

Using
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< E

< E {2B2|b2l|2F^(b^-A^T3)-ll}

< 2B2»Y-6» E {|Xi-X2ll2F^(b3(Y)-A^T3)-l}

where

b,. -= b,(y) = (y,-6,)(Xi-X3) .

But, for Y close enough to 6 and A^ sufficiently small, i.e., n

sufficiently large. Lemma 3.3.10 shows that we can bound

A similar bound exists for jEw . ^ and the result
^1 * ^2 * 3

^

obtains.

All of the conditions of Theorem 3.2.10 have been verified, and

therefore we conclude the following.

THEOREM 3.3.11

Under assumptions 3.3.1 - 3.3.3,

2B2E(|Xj-X2l|2Fj(bj(T)-4j3)-l|}

by e/2 so that

^/2
.

- d
n LT (S) - 0 (e)] > H(0,1) , as n>®.

ii n y
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3.4 The Asymptotic Normality of Pearson's
Partial Correlation Coefficient

The partial correlation between the variables Y and Z with X held

constant is defined to be

*^YZ.X

Ryz -
'^YX'^ZX

2 2
"^2

’

[(1-Ryx)U-R2x)J

(3.4.1)

where Rj^[j is the usual product monient correlation between the

variables a and b, i .e.

,

ab

•^aa’^bb^

V2

with

n

= I (a.-a)(b.-b) ,ab 1 1

and (3.4.2)

S
aa I (a.-a)^.

i=l
^

Suppose that Y and Z are both related to X by the simple linear models

Y.
1

o, + S 1 X . + E .

1 1 1 1
»

Z.
1 “2

* 1 = 1 . 2 , .n .

and (3.4.3)
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A A A A

Letting (a^) and
6^^

(B^) be the OLS estimators of (a^) and

(B
2
), respectively, we obtain the following residuals

A A

’‘i
9

and (3.4.4)

V.
1 ‘V“2>

- ‘V “
2

) i=l,2, . . . ,n.

It can be shown that, under the linear models (3.4.3), Ry^ x equal

to the partial correlation coefficient between E and E‘ nolding X

constant, i.e., i^y^.x ~
*^EE'.X* statistic may be written as

"^EE'.X
"

‘^YZ.X
*

‘^UV

*^E£' ‘^EX*‘^E'X

[(1-Rex) U’^E'x^^
\

Expressing each of the correlation coefficients in the above

expression in terms of the appropriate sums of squares and cross

products, we have
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R
XX^EE' ^XE^XE’

(3.4.5)
EE'.X

For efficiency studies, we shall obtain the asymptotic normality

of the partial correlation statistic under the "tri variate reduction"

model proposed earlier, i.e., when E and E' are related by

where {W
2i}, {W

3 ^-}, i = 1 . 2 , . . . , n, are three independent

random samples having the same distribution as the continuous random

variables Wj^, W
2
and W

3
with distribution functions Gj^(.), G

2 (.) and

G
3 (.), respectively. In addition we need the following assumptions:

^•4.8 The variables Wp W
2
and W

3
have finite second moments.

3.4.9 The variable X has a finite fourth moment.

Note that there is no loss of generality in assumption 3.4.7. Since

the statistic R^^'^x ^ function of "translation invariant" cross

products and sums of squares, it is free of the locations of X, Wp ^3

and W
3 , and hence no generality is lost in the zero-mean assumption.

Also, R^^'^x ^X’ variance of X, since replacing X^- by

^i^*^X
affect the value of R^^i so that we may safely take

0^= 1 . Denoting the variances of and by a^, and a^,

respectively, we see that

and (3.4.6)

> • • • > n

3 . 4.7 The variables X, Wp W
2 , W

3
have zero means, and cr^=l
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Corr(E.E') = A2a2/[(a^+A2a2) (a^+A^a^)]
V2

(3.4.10)

Note again that under the "tri variate reduction" model, the test of

independence is equivalent to testing Hq: a=0, where in general we may

consider A to be a function of n. We shall denote the partial

correlation coefficient

by R^=R^(X,W^,W
2
,W

2
» which is the same as the quantity R^^,

with E and E' being replaced by their corresponding values in terms of

4 and the W's. Using the same notation as in (3.4.2), we calculate

the new sums of squares and cross products involved in the statistic

Rf, to be

S, , = I (£ -E)(t;.-E')“
i=l

' '

= ^
5W3W3

and similarly.

^EE
=
^W^W^

" 2AS^^^^ . A
,

^E-E'
= ^ ^ ^

»

^XE
"
^XW^ ^^XW3 ’

(3.4.11)

and



98

^XE' ^XW2 ^^XW3

The asymptotic normality of may be obtained in one of two

ways. Viewing Rp to be the usual product moment correlation

coefficient applied to the residuals, one may think of Rp as a

function of three U-statistics, and then use theorems such as that of

Randles (1982) or our extended version Theorem 3.2.8 to obtain its

asymptotic normality. The other method is to obtain the asymptotic

normality of Rp by considering it to be a function of several sample

moments. Here, we shall follow the second approach, since it is more

straightforward and since it assumes finite moments up to order 4

rather than 6, as would be required by the first approach. For this,

we need to apply the following theorem by Kepner (1979):

THEOREM 3.4.12

Let Q. for i = 1, 2, . . . , n be a sequence of n i.i.d. random
I > 11

vectors where

» • • • *

I 9 II /N^ll
, . . . , n

and

where

. . .

,

Let

. P
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and

Let S be a neighborhood of u in and suppose that g:S R is a

function possessing continuous partial derivatives of order 2 at each

point of S. If

V2 d

then

V2 d

n C 9 (Z )-g(ii )J N(0,d‘ld) ,
»N/J| — - —

•

r>j rw

where

d =

3g(z)

5z,
» • • • f

z = y ~p

9g(z)

Sz.
z = y

In our case we shall let

*^li ,n
= X.

1
’
^2i,n

= x2
1

’ n
=

j 1 j n “11 •

^4i,n
=

''li
’ ^5i,n

= W2i ’ ^6i,n 4i

^7i.n
=

'^3i
’
^8i,n

= W^.
3i

’
*^91, n

"

^lOi ,n
= x.w^. ’

‘^lli,n
= X.W_.

1 3i
’
^12i,n

'= .

^13i ,n
=
^li^3i *

^14i,n
= W_.W-.

2i 3i ^15i,,n ^n
*
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Suppressing the n subscript on the elements of Z , these are given by
<-s/n

^5
"

^2 ’ ^6 "
TT ^2i

* ^7
"

^3 ’ ^8 "
IT '''si

*

^9 " fT^i ’ '^10
"^i=l ^^'^2i

’ ^11 "^4i ’

^12 "F '^li'^2i
’ ^13 " 1 J '"'ii^''3i

’ ^14 " I ‘^2i^3i
’

1=1 1=1 1=1

and Z^g “
^n’

= (0, l.O.a^. 0.02.0, ag.O.O.O.O.O.O.A^)' , (3.4.13)

where a. = Var[W.], i = 1, 2, 3. As functions of Z we can write11
= I

X?/" - = z. - z?
XX 1 2 1

and similarly

^ ^9 * ^XW2^"
^

^10 * ^
1
^

^XW^"
"

^11 ^1^7 ’ ^4 ^3
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and.

“
^12

“
^3^5 ’ ' ^13“ ^3^7

2

^W2W2^"
"
^6

“
^5 ’ ^W2W3^"

"
^14

" ^5^7

^W3W3/'^
^

^8 ^7 •

It follows that

S^^./n = (Z^2 - Z3Z5) * 4(Z^3 - Z3Z3) * 4(Zj^ - ZjZ^) + -l]) .

hd’'
' <^4

- * 2MZj
3

- Z3Z7) + . ^2)
_

S^.^./n = (Zj -
zl> * 2MZj^ - ZjZ^) * 42,,^ . ,2)

_

Sx^/n = Ug -
2^23) + A(Z^3 - 2^2^) ,

and

Sx£'/n ^
^^10

" ^1^5^ ’*’

"^^^11
" ^1^7^ •

Substituting in (3.4.11), = g(2^) can be written as

N.(2 0 - N„(Z )

X b <^n

g(z„) =—
V:

(3.4.14)

V<£n»

Where,



- [Zg-Zj^Z^+AiZj^^-Z^Zy)]
, and

2 2With u as given in (3.4.13), W.(u )
= La‘:, W,{u„) = 0.

'^>1 1 />i»n no c

g(Un)
=

Vz
(3.4.

which is nothing but Corr(E.E') given in (3.4.10).

Next, define

)

and

1

|j* —
(yj^, ii£ > • • • * ^]_4^

where ^2
* • • • » are the first 14 elements of

y^
given in

(3.4.13), which are free of n. It follows that (see, for example.

Serf ling, 1980, pp. 125-6)
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V2 d

where I* is the variance-covariance matrix of the vector

(X.X^,W^,W^,W2,W2.W3.W3,XW^,XW2,XW3,W^W2,W^W3,W2W3) .

The matrix I* may be written in the partitioned form

*^8x8
I

0

f =

0 1

1
^6x6

where

1 £[x^] 0 0 0 0 0 0

ECX^J ELX'^]-] 0 0 0 0 0 0

0 0 E[wJ] 0 0 0 0

0 0 E[W^] E[wJ]-aJ 0 0 0 0

M =

0 0 0 0 E[W^] 0 0

0 0 0 0 ELW^] ELW^J-cr^ 0 0

0 0 0 0 0 0
2

E[«3]

0 0 0 0 0 0 E[wi?] E[wh-at
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and

o2
1

S =

“^2

2 2

2 2

2 3

Also, note that n converges in distribu-

tion to a normal random variable degenerate at zero, which implies

that

Vz

where

^
15

( 0 . 1 )

To obtain the asymptotic variance of R = g{Z ) we need the
n ~n

vector
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for i = i, 2, . . . , 15.

Since the 15^*^ diagonal element of I is zero, we only need to

calculate the elements di, do, , di^ of d. Our calculations

indicated that, except for d
^2 = l/{a^a

2 ), remaining elements of d

are all zero, so that the asymptotic variance of g(Zf^) is

= d' ^ d = 1 .

Now, g is a ratio of two polynomial functions whose denominator

admits non-zero second order differentials in a neighborhood S of

Therefore, g possesses continuous second order partial derivatives in

a neighborhood of y allowing us to apply Theorem 3.4.12 to obtain:

THEOREM 3.4.16

Linder conditions 3.4.7 - 3.4.9,

V2 d

n Cg(Z„) - g(ii-)] > N(0,1),

where

~n n

and
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3.5 The Pitman Asymptotic Efficiency of Relative to R„

In this section we shall apply Noether's generalization of a

theorem by Pitman to obtain the asymptotic efficiency of relative

to R^, which we shall denote by ARE(T^,Rj^). We first state the

theorem by Noether (1955), and then verify its conditions for the two

statistics and R^.

Theorem 3.5.1 (Noether)

Consider testing Hq:0=0q versus H^:0>0q, let {Q^} be a sequence

of alternative parameters with lim 0 = 0„.
n 0

n>®
Suppose the test is based on the statistic T^ = T(xj^, ,

Xf,), and let '*'^(9) and
<^n^9)

be functions of 0 (in many cases these

are respectively the mean and variance of T^). Assume that

A. 'p'(0q) = . . .
= 'i'^'"'^^0Q) = 0 . ^ ^

B. lim n = c > 0 , for some 6 > 0 .

n-H»

The indicated derivatives are assumed to exist. We shall consider the

power of the test based on T^ with respect to the alternative

H' :0^=0O+k/n'^ where k is an arbitrary positive constant. In addition

to A and B assume

C. lim = 1 ,

n+oo

and

li« c„(e„)/^„(e„) = 1 ,

n-H»

and



107

0 . The distribution of [T^ - standard

normal distribution, both under the alternative hypothesis H' and

under the null hypothesis Hq: 0^=0q. If and 12^ are two statistics

for testing Hq against H‘, and if iiij^=rn2=ni. then the ARE of the two

tests satisfying A, B, C and D is given by

lim
n-H»5^ = are (T2„,Ti„) 9

Where R.^(0) = 'i'j|lj^0)/a.^ (0) , i = 1, 2.

Pitman has called the quantity efficacy of the i^*^ test

in testing the hypothesis Hq:0=0q.

Our hypothesis is given by Hqia=o versus H^:a>o, where A is such

that

E. = W. . + AW,,
li 3i

and

W„. + AW,.
2i 3i

In addition to assumptions 3.3.1 - 3.3.4 of section 3.3 and assump-

tions 3.4.7 - 3.4.9 of section 3.4 we need the following assumption:

3-5.2 The density functions f|^(.) of - W|^2» k = 1. 2, 3,

have continuous and bounded derivatives.

Next, we shall verify the conditions of Theorem 3.5.1 for each of the

statistics T^ and R^, using the same notation adopted by Noether.

Here, we shall let {a^} denote a sequence of alternative parameters

converging to the null, i.e., lim a = 0.
n



108

Application of 3.5.1 to the statistic T^ :

With 9=A, 9g=0 and 6 denoting the vector of slope parameters, we

have from (3.3.5)

f„(A) = ELF (3, A)]
II n rw

= 2P{T^+aT3 > 0, T2+AT3 > 0} + 2P{T^+aT3 < 0, T2+AT3 < 0} - 1

= {2[1-F^(-aT3)][1-F2(-AT3)]
3

+ 2F^{-AT3)F2(-AT3) - 1} . (3.5.3)

where Tj^ = - W
|^2

has distribution function Ej^(.) and density

f|^(.), k = 1, 2, 3, and where E^ denotes expectation with respect

to the variable T
3

. Therefore, we can write

'l'^(A) = /{2[l-F^(-At)[l-F2(-At)]+2F^(-At)F2(-At)-l}dF3(t) (3.5.4)

with 'i'^(O) = 0 since F^(0) = F
2

( 0 )

The integrand of the above expression involves continuous bounded

functions, so that by theorems such as Theorem A. 2.4 of Randles and

Wolfe (1979), the derivatives with respect to a may be taken inside

the integral, to obtain

V(A) = /{2tf^(-At)[l-2F2(-At)]+2tf^(-At)[l-2F2(-At)]}dF3(t)

and, therefore, ’i''(0) = 0 since F (0) = F ( 0 )
= U

n 1 2 ' n-
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Using assumption 3.5.2, we differentiate a second time,

f^(A) = /{8t^f^(-At)f2(-At) - 2t^f|(-At)[l-2F2(-At)]

2A‘(-At)[l-2F^(-At)j}dF3(t)
,

/8t^f^(0)f2(0)dF3(t)

= 8f^(0)f2(0)E[T3]

= 16a2f^(0)f2(0) > 0 , (3.5.5)

since with E[W3] = 0, ELT3] = Var[T3] = Var[W^^-W^2-l = 2a^.

This satisfies condition A, with m=2. For the remaining conditions we

shall take ^ ^ ~ Condition B follows

since

so that

r(0) =

lim n'"’'^'?^"’^0)/a (0)
n-H»

" ^

^/2
2

^^2

= lim n . loa^f (0)f (0)/(4/9n)
n-H»

^

= 24a^f^(0)f2(0) = c > 0 .

so seeCondition C is immediate from the definition of a (A ). We al
n n

that under assumptions 5.3.2
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litn r(A
)

= f"(0) .

In sections 2.4 and 3.3, respectively, we have shown that

[T -'F (A )]
n n n

(A )
n' n'

= LT-9(S)j
c n n ~

d

> N(0,1) ,

as n^, both under the null hypothesis and under a sequence of

alternatives, thereby proving condition 0. The efficacy of the test

based on is then given by

= L'F;;(0)/a^{0)J^

= n.576cr^fj{0)f2(0)

where f^^{.) and f2(.) are the probability density functions of

Ti = Wi2~^12 ^2 ^
'^2l"'^22*

>"espectively, and = VarLW^].

Application of 3.5.1 to the statistic R^ :

To verify the conditions of Noether’s theorem we shall let

and

= a2(o) = 1/n ,

where <?.

1
VarCW.], = 1, 2, 3. Note that '^^(0) = 0, and
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r (A) = 2Aa2(a^+Aa2) ^(o^+Ao^) ^

-A^a2(o^+ACT2) ^(g^+Aa^)
^

SO that 'i'i^(O) = 0. Differentiating a second time and evaluating at

A=0 we have

f;j(0) = 2^3/0^02 > 0

and hence condition A is satisfied with m=2. Condition B is satisfied

with m=2 and <S = V4 , since

lim n""'V"’^(0)/a (0) = lim n '^.Zaha.o.n
n-Hx.

>• ” i I c

2
= 203/0^02 = c > 0 .

Condition C is immediate. Also, in the previous section we have shown

that CRn"'^n^^n^^/‘^n^^n^ converges in distribution to the standard

normal distribution, thus obtaining condition D. The efficacy of the

test based on is then given by

R = C't'"( 0 )/a ( 0)]2 = 4nAa202
.

3 ' 12
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THEOREM 3.5.6

Under assumptions 3.3.1 - 3.3.3, 3.4.7 - 3.4.9 and assumption

3.5.2, the asymptotic efficiency of relative to is

Here, fj^(.) [f
2 (.)] is the density function of the difference between

two i.i.d. random variables (^2 = Since in the

"trivariate reduction" model we implicitly assume knowledge of the

distributions of and W
2 , we need to find fi(0) and f2 ( 0 ) in terms

of g]^(.) and g 2 (.). the respective densities of and ^
2

* It can be

shown that

Using the above relation, we have calculated ARE(Tn,Rf,) in the case

where Wp ^2 *^3 l^^^e the same distribution. The results of these

calculations for some well known distributions are given in Table 3.1.

ARE(T^,R^) = 144cr^a^f^(0)f2(0) . (3.5.7)

f.-(O) = / gj(x) dx , i = 1,2 .

Table 3.1

Asymptotic Relative Efficiencies

Distribution

Normal 9/it^ = 0.912

Uniform 1

Logistic 1.2

Laplace 2.25



CHAPTER FOUR
THE CORRELATION PROBLEM

4.1 Introduction

Let .... denote a random sample of n

observable pairs from some continuous bivariate population with

distribution function F. As mentioned in chapter 1, the problem of

interest in this chapter is to test the null hypothesis that there is

no correlation between the variables Y and Z, versus the alternate

hypothesis that a correlation exists between these variables. If we

let

be the correlation coefficient of interest, the above hypotheses

translate to

or the one-sided alternatives of positive correlation (t>0) or

negative correlation (t<0). In chapter 1, we discussed the motivation

behind using a coefficient such as t, and hypotheses such as those

given in (4.1.2). In particular, we indicated that, at least to us, t

is a most natural measure for a "useful" relationship between the

variables, in the sense that its values indicate whether larger values

T = p{(Y^-Y2)(Z^-Z2)>0} - p{(Y^-Y2)(Z^-Z2)<0} (4.1.1)

versus H^: x o (4.1.2)

113



114

of Y are associated with larger (or smaller) values of Z, and that,

therefore, the hypotheses given in (4.1.2) are most appropriate. For

these hypotheses, we shall use tests based on Pearson's R and

Kendall's tau statistics, although classical tests based on these two

statistics assume the null hypothesis of the independence of Y and

Z. In section 4.2, we give a brief description of these tests for

independence, discuss their properties and their limitations for

testing (4.1.2). Although the tests based on Kendall's tau and

Pearson's R have different consistency classes (x?^o for the first, and

p?^0 for the second), under the elliptically symmetric models studied

in this chapter, these consistency classes are identical, since under

such models is equivalent to p?^0. We can thus base tests on

either R or Kendall's tau without being unfair to either test. In

section 4.3, we propose some modifications of these tests in the hope

of developing a procedure for testing the null hypothesis that x=o.

Section 4.4 contains the results of a Monte Carlo study investigating

the performances of these tests, and our conclusions and

recommendations are given in section 4.5.

4.2 Some Tests for Independence

Pearson's product moment correlation coefficient is given by

n

I (Y,-Y)(Z,-Z)
i=l

^ ^ —r- (4.2.1)
o n o V?

{ I (Y.-Y)2 I (Z,-Z)^}
i=l ^ i=l 1
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where

n n

Y = i Y. /n and
i=l

’
Z = I Z./n .

i=l
^

The mean of R is

E[R] = P + 0(n"^) .

and the variance is given by

(4.2.2)

where p = Corr{Y,Z). (See, for example, Cramer, 1966, p. 359.) Under

the assumption that p is 0 and YjZ (or ZjY) is normal, then

has the Student's t-distribution with (n-2) degrees of freedom (see,

for example, Anderson, 1958, p. 64). From expression (4.2.2), we note

that the asymptotic variance of R depends on the parameter p. This

motivates the use of a variance-stabilizing transformation. Such a

transformation yields what is known as Fisher's Z,

which under the assumption of normality has an limiting mean of

Vz
T = R[(n-2)/(l-R^)]

Z In [(1+R)/(1-R)] , (4.2.3)
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V2 1n[(l+p)/(l-p)], and an limiting variance of l/(n-3), so that under

the hypothesis of independence (p=0), (n-3) ^^^2
2 has an asymptotic

standard normal distribution. (See, for example, Anderson, 1958,

p. 78).

Kendall's tau is a U-statistic estimator of t given in (4.1.1).

It is

1— .1. Sgn{(Y,-Y.)(Z,-Zj)l

Where

1 if t > 0

Sgn(t) = "SO if t = 0 .

-1 if t < 0

(4.2.4)

This U-statistic has a symmetric kernel of degree 2 given by

h(Xi,X2) = Sgn{(Y^-Y2)(Z^-Z2)} ,

with X = (Y,Z)'. Note that

E[^] = E[h(X^,X2)]

= P{(Y^-Y2)(Z^-Z2)>0} - P{(Y^-Y2)(Z^-Z2)<0}

Using results on the variance of a U-statistic, we have
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Var[x] = —— [2(n-2)c, + ,

(2)

where

hlXi.Xa)]
-

and

Letting hj^(x) denote
I

X^
“ noting that

E[hi(Xi)] = T, we can write

= M^th{X^.X
2
)h(X^.X

3
)]|X^ = x} -

= E[h^(X^)] -

= Var[h^(X^)] .

Under the hypothesis of the independence of Y and Z, x=0 and

so that the variance of x simplifies to

Var fxl -

9n(n-l)

(4.2.5)

(4.2.6)

(4.2.7)

= 1/9.

(4.2.8)
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A.

In general, however, VarCtJ depends on the underlying bivariate

distribution of (Y,Z).

To compare the powers of the tests based on the statistics R and

T, one needs to define a suitable class of alternatives, i.e., a class

of alternatives which is reasonably wide and reasonably easy to handle

mathematically. One such class of alternatives was formulated by H.S.

Konijn (1956). Similar classes were also proposed by S. Bhuchongkul

(1964) and O.Y. Gokhale (1978). To obtain the class of alternatives,

Konijn defines

Y = + X
2
W
2

and

^ ^3^1 ^ ^4^2 *

where and W 2 are two independent random variables, and the

hypothesis to be tested is

Konijn reports the asymptotic efficiency of t relative to R for

several distributions, in the case when and W
2
are identically

distributed. The values of these AREs are 9/ir^ = 0.92, 1, 0.86, and

1.266 for the normal, uniform, parabolic (f(t)=kt^, for a_<t<b), and

the Laplace distributions, respectively. To compare the empirical

powers of tests based on the statistics R and t through a Monte Carlo

simulation, we adopted a class of alternatives similar to the one
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proposed by Konijn, but involving only one parameter, A. This class

of alternatives was suggested by Hajek and Sidak (1967) and is given

by

Y = + aW^

and (4.2.9)

Z = W
2

+ aw^ ,

with Wj, W
2 and being mutually independent, so that the hypothesis

of independence is equivalent to

Based on the AREs reported by Konijn, we expected Kendall's tau to

perform better for heavy-tailed distributions. To our surprise,

however, we found in our Monte Carlo studies that Pearson's R

exhibited a high degree of robustness in terms of its stable

empirical a-level and empirical power even for such heavy-tailed

distributions such as the Cauchy distribution. To test the

broader null hypothesis x=0, we calculated empirical levels and

powers for pairs of observations from some bivariate elliptically

symmetric distributions (see Johnson and Ramberg, 1977). Here, the

empirical a-levels for tests based on both statistics, R and x,

were largely inflated, although the a-levels for tests based on

Pearson's R were much higher (details of this and other studies

are given in sections 4.4 and 4.5). We suspected that these
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inflated levels were due to the fact that under Hq: t=0, the

A

variances of R and t are different from those under the hypothesis of

independence. This and other observations motivated us to propose

some modifications to the classical tests based on R and t. A

discussion of this is given in the next section.

4.3 Tests for Correlation

If the hypothesis of the independence of Y and Z is relaxed, many
A

of the properties of x and R discussed in the previous section no

longer hold. For example, under the hypothesis that x=0, E[x]=0, but
A

the variance of x depends on the underlying distribution F, and hence
A

T is neither distribution-free nor asymptotically distribution-free

(see the expression for Var[^] given in (1.2.5)). From U-statistic

theory, we know that

- V2 d

(x - x)/{Var[x]} ->• N(0,1)

and

n

V2 .

(x -

( 4 ?^)

M(0,1) as n-x» .

To test the hypothesis x=0, Fligner and Rust (1983) considered several

estimators for 4?^. They recommend the use of the jackknife estimator
"2

.

Oj given by
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= (n-1) I - t)2
, (4.3.1)

i=l

A / • \

where t ^ is Kendall's tau computed on the subsample of size (n-l)

formed by leaving out the ) pair. If one defines C^. as

C. =
n

I Sgn{(Y -Y )(Z.-Z.)} . i=l,2,,
j=l 1 J 1 J

. » n ) (4.3.2)

then, one can show that

T = t C./n(n-l) = C/(n-l) ,

i=l
^

(4.3.3)

and that

= 4 I (C,-C)^/(n-l)(n-2)^ .
‘J

i=l
^

(4.3.4)

where

n

C = I C./n .

i=l
^

Fligner and Rust obtained the statistic

* V2 ^ ~

K = n T/a.
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n

I C.—
r- •

\ 9 ? V2
[n(n-D] 2[ I (C.-C)^]

1=1 ^

and observed that, since Cj^, . . . , depend on the observations

through their marginal rankings, K* is distribution-free under the

hypothesis of independence, and that the tests based on t and K* have

equivalent consistency classes and asymptotic relative efficiencies.

They further note that an advantage of K* over t is that K* is also

asymptotically distribution-free under the hypothesis t=o. One

drawback to using the Fligner-Rust statistic is that may be

identically zero even in non-extreme cases. In a preliminary

simulation study, we have discovered several rank configurations such

^2
as the one given below where = 0. When, for example, the ranks are

Rank (Y): 12345678
Rank (Z): 5 6 7 8 1 2 3 4,

i = 1, 2, . . . , 8 , and therefore = 0 . For extreme

cases of "perfect concordance" or "perfect discordance," it is

reasonable to assume a very small value for cr^ (i.e., a very large

value for K*), thereby rejecting the null hypothesis that t=0.

However, such a procedure should not be used for situations similar to
A

the one given above where x = - i /7 and hence no indication of either

concordance or discordance is present.
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Another estimator of Var[r] was proposed by Noether (1967).

Using the notation developed above, his variance estimator may be

written as

^ ^
"I o ^ o

A disadvantage of this variance estimator is that it may be

negative. For example, for the rank configurations given above,

= C = -1, i = 1, 2, . . . , n, and x = - 1/7 so that

Var[t]
96

49n(n-l)
*

We propose a variance estimator which is guaranteed to be posi-

tive except for the extreme cases of x = ±l. This is the consistent
A

estimator of Var[x] based on the sample estimators of ^ 2 *

similar to those considered by Randles, Fligner, Policello and Wolfe

(1980) and previously developed by Sen (1960). The variance of x is

given in (4.2.5) as

Var[x] = -^2(n-2) + ?„] , where

(2)
^ ^

= Var[hj(X^)] and = 1 -
,

h,(x) = E[h(X.,X5 )|X, = x] .

with
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Since = t, and taking t to be the estimator of x, the sample

estimator of may be written as

^ -I 1

1

^ 0

=1 -

where

h,(X )

i ~i

TiV ji
Sgni(Y,-Yj)(Z,-Z.)l

(4.3.6)

(4.3.7)

A ^2
Taking ^2 = to be the estimator of ^2 » proposed estimator for

A

the variance of t is

Var[t] =
-J— [2(n-2) + c ] .

(
2

)

^

Using the notation of Fligner and Rust, we see from (4.3.2) and

(4.3.3) that

h(Xi) 7^ , so that

n ^ CC./(n-l) - C/(n-l)]‘^
^ ^ i=l

^
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1

n(n-l)
2

n

I
1=1

[C.-C]'

which is the same as the Fligner-Rust estimator of used in

expression (4.3.4) with (n-1) and (n-2) being replaced by n and (n-1),

respectively. It follows that

Var[x] = I (C.-C)^ + 1-^^]

(") n(n-l)‘^ i=l
^

and the corresponding test statistic is

V2
f/[Var(T)] . (4.3.8)

^ 'if

As with K , is distribution-free under the hypothesis of

independence, and is asymptotically distribution-free under the more

general hypothesis t=0.

The null distribution of was generated by a simulation study

based on 10,000 replications. For each replication, two independent

random samples each of size n were generated from the standard normal

distribution using the IMSL library. At each stage, K
^5 was

calculated and a count was kept for each possible value up to three

decimal places. The upper tail critical values (rounded to 2 decimal

'ic

places) of
•^RS

for selected a-ievels and for n = 6(1)30 are given in

Table 4.1.
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Table 4.1

The Null Distribution of

Selected values of Upper tail critical values of the

distribution of under the hypothesis of independence.

n a=0.10 0=0. 05 ct=0.025 a=0.01 a=0.005

6 1.31 1.90 2.62 3.29 4.50
7 1.38 1.87 2.41 3.36 4.14
8 1.25 1.78 2.22 2.89 3.42
9 1.27 1.76 2.28 3.00 3.46

10 1.27 1.74 2.17 2.83 3.40
11 1.28 1.72 2.23 2.76 3.20
12 1.27 1.68 2.11 3.75 3.25
13 1.24 1.68 2.10 2.72 3.20
14 1.23 1.66 2.07 2.63 3.10
15 1.25 1.70 2.13 2.61 2.98
16 1.24 1.67 2.07 2.62 2.98
17 1.24 1.63 2.07 2.58 2.97
18 1.26 1.69 2.03 2.58 2.98
19 1.26 1.69 2.06 2.52 2.98
20 1.20 1.63 1.97 2.41 2.79
21 1.26 1.70 2.12 2.60 2.92
22 1.25 1.62 2.05 2.43 2.77
23 1.26 1.66 2.04 2.58 2.94
24 1.25 1.67 2.07 2.55 2.84
25 1.22 1.65 2.02 2.55 2.85
26 1.24 1.63 2.01 2.43 2.77
27 1.25 1.66 1.98 2.39 2.71
28 1.25 1.63 2.00 2.47 2.31
29 1.27 1.68 2.04 2.54 2.84
30 1.23 1.62 2.00 2.44 2.77
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4.4 Empirical Power Comparisons

The performances of three statistics based on Kendall's t and

four statistics based on Pearson's R were investigated through a Monte

Carlo simulation study, each with 1000 replications. The statistics

considered were the following

n
^

1) K = (

2
) T was compared to table A. 21 of Hollander and Wolfe

(1973).

2) ZK = K/[n{n-l) (2n+5)/18] ^2, which is Kendall's statistic

standardized by the variance under the hypothesis of independence,

was compared to the 0.05 upper critical value of the standard

normal distribution Zq^q^ = 1.645. For n=8, both a correction for

continuity (adjusted by 1 rather than by 0.5 since K takes on only

even values) and randomization for an exact a=0.05 level through

the use of a Uniform [0,1] random variable were employed.

3) Our proposed statistic, K^^, was compared to the simulated

critical values given in table 4.1.

4) T = R
{
—

} was compared to the upper 0.05 cut-off value
l-R*^

of the Student's t-distribution with (n-2) degrees of freedom.

5) The standardized Fisher's Z,

where

FZ = Z/[ ]
n-3

V2

>

Z =
-^ In C(l+R)/(1-R)]
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was compared to Zq = 1.645.

6) and 7) RJ

[Varj(R)]^^2

and

[Varj{Z)]^^2

where Varj(R) and Varj(Z) are the jackknife estimators of the

variances of R and Z, respectively, were compared to Zq = 1.645.

The use of these jackknife estimators was motivated by our suspicion

that they may improve the performances of the tests based on R or Z

when the assumptions of normality and/or independence were no longer

present. Fisher's Z transform was included in this study not only for

completeness but also because of some of its desirable properties such

as its stabilized variance, and the fact that it is "more nearly

normal" than R. Furthermore, most advocates of the jackknife

recommend variance stabilizing transformations to "keep the jackknife

on scale and thus prevent distortion of the results" (see, for

example, Hinkley, 1977, 1978, and Miller, 1974). The jackknife

estimators of R and Z were obtained by a procedure similar to that

given in Hinkley (1978). First, we calculate the pseudovalues

= nR - (n-l)R^^'^

and
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= nZ - (n-l)Z^^'^ , 1=1,2,. ..,n

where is the product moment correlation coefficient based on a

sample of size (n-1) obtained by deleting the i^*^ pair, and Z^^^ is

the corresponding Fisher transform; i.e..

,(i) - 1 i„ rl * ’
I

The sample variances of the pseudovalues are then given by

VR = [PR^^^ - PR]^

and

where

PR’"!- I Pr''* and PT = i T PZ*'’ .

" 1=1 " i<

The recommended variance estimates of R and Z are then

Varj(R)=-!!^ and varj(Z) =

.

In the computer algorithm to calculate these jackknife estimators,

some useful recursive relations were used which enable one to update

sample variances and covariances when the sample is augmented by an
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additional observation. These relations are derived to be

n „ n-1

I (X.-X = I (X.-X
i=l

' " i=l

and

n n-1

n-1

where

The results of the Monte Carlo study based on 1000 samples each

comprised of n=8 and n=20 pairs of observations are given in tables

4. 2-4. 5. The empirical sizes (powers) corresponding to the seven

tests listed above were computed for several bivariate

distributions. For the hypothesis of independence, the pairs (Y,Z)

were formed by letting

where Wj^, W2 and W3 are independent random variables, so that the

hypothesis of independence is equivalent to testing A=0. For each of

the 1000 iterations, 3n i.i.d. random variates were generated from a

specific distribution using IMSL subroutines. These were divided into

Y = + AW3

and (4.4.1)

z = W2 + AW^
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three groups, each of size n (n=8 and n=20), to obtain {W2j}

and {W3^-}, i = 1, 2, . . . , n. The pairs (Y^,Z^-), i = 1, 2, . . . ,

n, were then obtained by relations (4.4.1), for A = 0.0, 1.0 and 2.0

(i.e., when Corr(Y,Z) = 0.0, 0.5 and 0.8, respectively). The seven

statistics mentioned earlier were calculated from these pairs, and

were compared to their corresponding cut-off values to obtain the

empirical powers. The results for the standard normal, the Uniform

[0,1], and the Cauchy distributions are given in table 4.3.

To test the hypothesis Hg: t=o, the seven statistics under

investigation were calculated on (Yj^,Zj.), .... (Y^,Z^), n=8 and

n=20, but here the (Y,Z) pairs were generated from such bivariate

distributions as the bivariate Cauchy, the Pearson Type II and the

Pearson Type VII distributions (see Johnson and Ramberg, 1977). In

the case of such elliptically symmetric distributions, ^=0 is

equivalent to p=Corr (Y,Z)=0 which in turn is equivalent to t=o. To

generate these bivariate observations, we have adopted the procedures

given by Johnson and Ramberg (1977). To form a (Y,Z) pair, we first

implement IMSL subroutines to obtain two random independent U[0,1]

variates, Uj^ and 82* For each of the three bivariate distributions

mentioned above, and U2 are transformed into two uncorrelated

variables and X2, by appropriate transformations discussed below.

The pair (Y,Z) is then obtained by

Z = XX, (l-x^)
V2

and (4.4.2)
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where 0 ^ X 1 , and Corr(Y,Z) = X, if and X2 have finite equal

variances. For the bivariate Cauchy distributions which is a heavy-

tailed distribution with no moments, the transforms X^ and X2 are

obtained as follows.

V2
Xi = (U’^ - 1) Cos(2ttU2)

and

V2
X
2

= - 1) Sin(2iTU2) .

The Pearson Type II is a light-tailed distribution which converges to

the bivariate normal distribution as the shape parameter v increases

to infinity. Here and X2 are obtained by

X^ =(1 Uj ) Cos{2irU2)

and

X2 =(1 Sin(2TrU2)

The Pearson Type VII distribution is more heavy-tailed than the

bivariate normal distribution, with the tail weight increasing as the

parameter v decreases. Xj^ and X2 are given by

X
1

/( 1-v)

1

V2
1) Cos(2ttU2)

and
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Table 4.2

Relative Frequency of Rejecting Hq

( nominal a=0.05)

Distribution
Tests Based on x Tests Based on R

A K ZK K^s T FZ RJ ZJof Wj^,W
2
,W

3

n=8

0.0 0.048 0.048 0.055 0.042 0.040 0.087 0.060
Normal 1.0 0.311 0.311 0.314 0.376 0.370 0.487 0.330

2.0 0.731 0.731 0.737 0.853 0.850 0.882 0.752

0.0 0.048 0.048 0.055 0.051 0.049 0.090 0.057
Un i form 1.0 0.288 0.288 0.306 0.347 0.340 0.490 0.343

2.0 0.754 0.754 0.772 0.894 0.891 0.933 0.838

0.0 0.046 0.046 0.061 0.058 0.057 0.076 0.048
Cauchy 1.0 0.340 0.340 0.331 0.409 0.407 0.384 0.204

2.0 0.529 0.529 0.509 0.572 0.568 0.548 0.365

n II
i>oo

0.0 0.060 0.059 0.059 0.056 0.056 0.077 0.065
Normal 1.0 0.688 0.684 0.676 0.766 0.762 0.777 0.724

2.0 0.994 0.994 0.992 0.998 0.998 0.997 0.994

0.0 0.060 0.059 0.059 0.066 0.065 0.072 0.058
Uniform 1.0 0.703 0.699 0.721 0.779 0.776 0.857 0.817

2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0 0.047 0.046 0.047 0.057 0.056 0.028 0.024
Cauchy 1.0 0.622 0.619 0.568 0.512 0.512 0.344 0.227

2.0 0.902 0.901 0.850 0.717 0.717 0.541 0.356
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Table 4.3

Relative Frequency of Rejecting Hq

(nominal a=0.05)

Oistn.

of (Y.Z) V X

Tests Based
A

on T Tests Based on R

K ZK Krs T FZ RJ ZJ

n=8

1.0 0.0 0.025 0.025 0.033 0.030 0.028 0.094 0.053
P 0.5 0.283 0.285 0.330 0.334 0.325 0.530 0.383

C
0.8 0.770 0.772 0.770 0.877 0.871 0.929 0.833

L

5.0 0.0 0.039 0.039 0.051 0.052 0.049 0.107 0.057

A 0.5 0.303 0.305 0.315 0.355 0.350 0.497 0.369

0
0.8 0.770 0.772 0.759 0.860 0.857 0.904 0.775

K

c
n=20

1.0 0.0 0.023 0.023 0.036 0.025 0.025 0.059 0.05
0 0.5 0.743 0.740 0.791 0.810 0.807 0.832 0.865

K1

0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ri

5.0 0.0 0.042 0.041 0.049 0.035 0.034 0.061 0.053
0.5 0.711 0.708 0.708 0.778 0.777 0.830 0.782

II 0.8 0.999 0.999 0.998 1.0 1.0 1.0 1.0
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Table 4.4

Relative Frequency of Rejecting rig

(nominal a=0.05)

Tests Based on T Tests Based on R
Distn.
of (Y,Z) V X K ZK

^RS T FZ RJ ZJ

n =8

2.0 0.0 0.076 0.077 0.075 0.143 0.139 0.130 0.075
P 0.5 0.354 0.356 0.331 0.457 0.453 0.470 0.317

F

0.8 0.732 0.734 0.707 0.793 0.789 0.802 0.630

1.25 0.0 0.106 0.107 0.091 0.358 0.356 0.177 0.083
A 0.5 0.383 0.385 0.338 0.580 0.574 0.426 0.198

R

s

0.8 0.702 0.704 0.641 0.783 0.782 0.690 0.380

n oCMII

2.0 0.0 0.078 0.077 0.059 0.214 0.214 0.104 0.073
0 0.5 0.670 0.669 0.593 0.672 0.671 0.583 0.473

H

0.8 0.985 0.985 0.968 0.945 0.944 0.905 0.813

1.25 0.0 0.101 0.100 0.070 0.434 0.433 0.166 0.061
0.5 0.643 0.642 0.511 0.659 0.659 0.444 0.198

VII 0.8 0.962 0.962 0.915 0.836 0.835 0.703 0.356
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Table 4.5

Relative Frequency of Rejecting Hg

(nominal »=0.05)

Distn.

of (Y,Z)

Tests; Based
A

on T Tests Based on R

X K ZK Krs t FZ RJ ZJ

B

n=8

I 0.0 0.089 0.090 0.084 0.245 0.243 0.151 0.091
V 0.5 0.368 0.370 0.323 0.516 0.515 0.443 0.263
A

R

I

A

T

E

0.8 0.727 0.729 0.683 0.782

n=20

0.776 0.744 0.522

0.0 0.091 0.090 0.065 0.350 0.350 0.131 0.075
C 0.5 0.653 0.649 0.551 0.660 0.660 0.481 0.326
A

U

C

H

Y

0.8 0.977 0.977 0.947 0.878 0.878 0.793 0.599
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^2
" Sin(2iTU2) .

Note that for ^ = 1,5, the Pearson VII is equivalent to the bivariate

Cauchy distribution. The results of the Monte Carlo study for

^ = 0.0, 0.5 and 0.8 and for selected values of v are given in tables

4. 3-4. 5.

4.5 Conclusions and Recommendations

In many cases, it is difficult to compare the powers of these

tests especially when the corresponding ct-ievels are highly different

for the different tests. In this discussion we present what we

believe to be a reasonable set of conclusions drawn from our study.

One such conclusion is that for the hypothesis of independence, the

tests based on R, namely T and FZ are highly robust in the sense of

having stable sizes and powers, as may be seen in table 4.2. This was

to be expected for light-tailed distributions, as was indicated by the

ARE calculations given in section 1.2. However, for n=20 the tests

based on Kendall's tau have slightly higher powers for a heavy-tailed

distribution such as the Cauchy, although for n=8 the performance of

the tests T and FZ is comparable to, if not better than, that of the

tests based on j^e tests based on R also do well for the

hypothesis Hg: t=o when the observations come from a light-tailed

bivariate distribution such as the Pearson II (see table 4.3). For

n=8, both T and FZ perform remarkably well in terms of holding their

a-levels and powers, while for n=20, the tests using the jackknife
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variance estimators, i.e., RJ and ZJ, do considerably better, followed

by the test
'^RS*

For the hypothesis Hq: t=o, and for heavier-tailed

bivariate distributions such as the Pearson VII or the bivariate

Cauchy the tests based on Kendall's tau do extremely well. Except for

the test ZJ, which is Fisher's Z transform standardized by the

jackknife estimator of standard error, all tests based on R have

highly inflated a-levels, and hence should not be included in any

A

power comparisons. Of the remaining tests, those based on t exhibit

the highest empirical powers. In particular, our test performs

the best both in terms of empirical “-level and power.

In summary, we note that for the hypothesis of independence the

tests based on Pearson's R are, in most cases, remarkably robust in

terms of both size and power. For the hypothesis t=0, the tests based

on K^£ are consistently better except in the case of the Pearson II

distribution where ZJ has slightly higher powers. However, in

practice one must take into consideration the ease with which a

particular statistic is calculated. As can be seen from the previous

section, the computation of a statistic such as ZJ is very tedious

compared to that of which is a function of the C^'s which are

naturally calculated in a Kendall's tau problem. Based on the above

discussions, our final recommendations are

1) For the hypothesis of independence, we recommend using a simple

test based on R such as T or FZ, except for large n (_>20) and

heavy-tailed distributions where we recommend the use of a test

based on the ordinary Kendall's tau such as K or ZK.
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2) For the hypothesis Hq: t=0, we recommend a test based on our

statistic in all situations. Furthermore, it is important to

note that may also be used to construct confidence intervals

for T. For small samples we recommend the use of table 4.1, while

for large samples (n>30) one may use the appropriate percentiles

of the standard normal distribution.



CHAPTER FIVE
MONTE CARLO RESULTS ANO CONCLUSIONS

5.1 Introduction

In Chapters 2 and 3, we discussed two tests for partial

correlation based respectively on T^, Kendall's tau statistic

calculated on the residuals, and R^, Pearson's partial correlation

coefficient. Based on the values of ARE(T^.R^) calculated in Chapter

3, we concluded that, for large samples and under the null hypothesis

of the independence of E and E (the "error variables" in the linear

models relating Y to X, and Z to X, respectively), T^^ performs better

than Rp for heavy tailed distributions. In Chapter 4, we studied the

usual correlation problem and discussed several statistics for testing

the null hypothesis x=o, where t was Kendall's correlation

coefficient between the variables Y and Z. In this chapter, a Monte

Carlo study is used to investigate the performances of the tests based

on T^, R^, and statistics similar to those discussed in Chapter 4 but

here calculated on the residuals from the fit involving the covariate

X.

In section 5.2, we shall discuss statistics similar to the ones

studied in Chapter 4 but modified to fit the partial correlation

setting, and tabulate their simulated null distributions. Section 5.3

contains a description of our Monte Carlo study and the tables of

140
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results. Section 5.4 contains our overall conclusions and

recommendations. In section 5.5, we give a brief list of related

topics open for future research and investigation.

5.2 More Tests for Partial Correlation

In this section, we shall develop some statistics for testing a

broader null hypothesis than that of the independence between E and

I

E . In particular, we shall be interested in testing

H : T = 0 versus H : t > 0 , (5.2.1)
0 d

where

T = P{(E^-E2)(Ej-E2)>0} - P{(E^-E2 )(e‘-E2)<0} . (5.2.2)

The two primary measures for partial correlation discussed in Chapters

2 and 3 are

and

n

I (u.-Ohv.-v)

^

n pH V2

( l (Uj-0)2 I (v.-v)2)
i=l ^ i=l

’

(5.2.3)

(5.2.4)
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where .... are the residuals obtained from fitting

the linear models

Y, = .x^ . a^x, . E,

and (5.2.5)

^i
' “2 ^2^i

^
^i

* i=1.2,...,n.

To test the hypotheses of (5.2.1), in addition to the statistics

and Rf,, we also use statistics similar to those discussed in Chapter

4. One such statistic is which is the statistic given in

(4.3.8) but applied to the residuals. That is, if

n

C. = I Sgn{(U.-U.)(V,-V.)} ,
1

j=l
1 J 1 J

the statistic K* may be written as

(5.2.6)

- 1 ”
where C = — C^. , and T^ is Kendall's tau applied to the residuals

as given in (5.2.2).

The distribution of K* under the null hypothesis that t=0 was

generated by a Monte Carlo simulation study in two cases: (i) when

the residuals were obtained by the OLS fit and (ii) when they were

obtained by the LAV fit. In each of these two cases, the residuals
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were obtained from the models

Y. = X. + E.
1 1 1

and

= X^. + E^. , i=l,2,...,n ,

where X^, i = l,2,...,n, are i.i.d. standard normal variables

generated by IMSL subroutines, and (E^-,E^-), i = l,2,...,n, are pairs

of observations from the Pearson Type VII distribution with X=o (i.e.,

T=0) and v=2 and generated by the procedures described in section

4.4. From these residuals the statistic K* was calculated and its

value recorded. This process was repeated 10,000 times. The upper

tail critical values of K* for selected values of a and for n = 6(1)20

are given in Table 5.1 (the OLS fit) and Table 5.2 (the LAY fit).

It must be noted that the use of the Pearson Type VII

distribution with v=2 to generate the null (t=o) distribution of K*

was not altogether arbitrary. This choice was motivated by the fact

that this particular distribution is "close" to the bivariate normal

distribution in terms of having moments and in terms of tail weight

(it has a slightly heavier tail than the bivariate normal

distribution), but it is more appropriate than the bivariate normal

distribution for testing the null hypothesis t=o since under the

Pearson Type VII distribution, X=0 (t=0 and P=0) does not necessarily
I

imply that E and E are statistically independent.



n

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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Table 5.1

The Null Oistribution of K* (OLS fit)

“=0.10 “=0.05 «=0.025 a=0.01 a=0.005

1.90 2.62 - - -

1.87 2.60 3.36 4.72 6.48

1.80 2.44 3.15 4.61 5.22

1.68 2.35 3.05 4.11 5.00

1.66 2.26 2.96 4.14 4.95

1.64 2.24 2.39 4.05 4.96

1.62 2.21 2.89 3.88 4.95

1.59 2.18 2.83 3.74 4.65

1.57 2.18 2.83 3.72 4.5

1.56 2.12 2.77 3.52 4.41

1.54 2.11 2.70 3.57 4.45

1.52 2.08 2.71 3.56 4.30

1.51 2.07 2.65 3.43 4.14

1.50 2.01 2.63 3.38 3.98

1.52 2.03 2.62 3.44 4.00



n

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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Table 5.2

The Null Distribution of K* (LAV fit)

a=0.10 a=0 . 05 ci
=0.025 a=0.01 a=0.005

1.67 2.90 - - -

1.59 2.40 3.36 4.72 6.45

1.43 2.05 2.80 3.94 5.22

1.44 2.00 2.61 3.60 4.44

1.39 1.96 2.52 3.30 4.18

1.42 1.97 2.48 3.15 3.71

1.41 1.92 2.38 3.07 3.73

1.38 1.88 2.36 3.00 3.41

1.37 1.85 2.28 3.01 3.43

1.34 1.82 2.29 2.98 3.55

1.36 1.81 2.30 2.89 3.26

1.35 1.78 2.22 2.87 3.31

1.33 1.75 2.21 2.72 3.18

1.34 1.76 2.16 2.78 3.15

1.34 1.76 2.21 2.76 3.17
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5.3 The Monte Carlo Study

In this section we compare the performances of the tests based on

^n* *^n *^n
through a Monte Carlo simulation study with 1000

replications. The hypotheses of interest are

and

E and E are independent

Hq; t = 0 .

(5.3.1)

where t is as defined in (5.2.2), and E and E are the error variables

of the model structures (5.2.5). Throughout tnis study we have taken

the variable X to have the standard normal distribution, and have let

the pair (E,E ) assume a variety of different bivariate distributions.

For the hypothesis of independence, the class of alternatives is

defined by the "trivariate reduction" model given by

E =

and

e' = W2 + ,

where Wj^, W2 and are mutually independent continuous random

variables, and a is a constant. The hypothesis of independence

(5.3.1) is then equivalent to

A = 0 .
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For the hypothesis (5.3.2), we have taken the variable {£,£ ) to

have an elliptically synmetric distribution with "association

parameter" x, so that the hypothesis (5.3.2) is equivalent to

where x is as given in (4.4.2).

The variables X^, X
2 , . . . , were generated by the IMSL

subroutine GGNML, and the pairs (£,£',), .... (E^.t^) were obtained

by the exact same procedures used to generate the variables (Y^^.Z^),

...» (Yp,Z^) in section 4.4. The variables of interest under the

partial correlation setting were then formed by calculating

Y. = X. + £.
1 1 1

and

^i
^

^i ^i
’ i=l,2,...,n .

From the above linear models, pairs of residuals (U;^,V^), . . . ,

(Un.Vn) were obtained from (i) the OLS fit, and (ii) the LAV fit, and

from each of the two sets of residual pairs the statistics T^, K* and

were calculated. Based on these statistics, the performances of

the following seven tests were compared.

Tests based on T :— n

(i) Tj^ = (^IT^ was compared to table A. 21 of Hollander and Wolfe

(1973).

(ii) T
2

= (^)T^ was compared to the tables of the simulated
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distributions of under the hypothesis of independence. It

was compared to values of table 2.1 for the OLS fit, and table

2.2 for the LAV fit.

T

( i i i )
=

,

{(2n+5)/18n(n-l)}
^^2

which is standardized by the variance of the ordinary

Kendall's tau under independence, was compared to the upper

a=0.05 critical value of the standard normal distribution Zq

= 1.645.

For each of the above three tests randomization was employed to obtain

an exact a=0.05 level.

Tests based on K* :

The three tests Kj^, K£ and K3, respectively, were obtained by

comparing K^ to

(i) the a=0.05 cutoff values of the distribution of hs (K* under

the ordinary correlation problem given in table 4.1),

(ii) the a=0.05 cutoff values of the simulated null distribution of

jf I

Kp when {E,E ) has the bivariate normal distribution. Only

selected cutoff values were generated for completion. For

reasons we discussed in the previous section, we recommend

using tables 5.1 and 5.2 which contain the null distribution of

ic '

when (E,E ) has the Pearson VII distribution, and

(iii) by comparing K* to the ct=0.05 critical value of table 5.1 (for

the OLS fit) and table 5.2 (for the LAV fit).
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Tests based on R„ :

value of the Student's t-distribution with (n-3) degrees of

freedom.

}
was compared to the upper 0.05 cutoff

Z , 1 + R

(ii) R2 = —— where = j In
{p_- (5.3.3)

was compared to ^0.05 ~ 1*645.

V2
(iii) R^ =

^ compared to Zq = 1.645.

V2
(iv) R^ = Z/{Varj(Z^)} was compared to Zq = 1.645, where Z

is as given in (5.3.3).

The jackknife variance estimators Varj(R^) and Varj(Z^) were obtained

by the procedures discussed in section 4.4 but applied here to the

residual pairs.

The relative frequencies of rejecting Hq for sample sizes n=8 and

n=20, and for various distributions are given in tables 5.3-5.12.

Tables 5. 3-5. 6 contain the results for the hypothesis of conditional

independence where the class of alternatives is given by the

"tri variate reduction" model. Tables 5.7-5.12 contain the results
I

when (E,£ ) has an elliptically symmetric bivariate distribution.
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5.4 Conclusions and Recommendations

From tables 5. 3-5. 6 we can see that for the hypothesis of

conditional independence and under the "trivariate reduction" model

the performance of Pearson's partial correlation coefficient (R^ in

particular) is very remarkable. For both the OLS fit and the LAV fit

and for both small and large samples the test exhibits an

unexpectedly high degree of robustness in terms of both size and

power. This is perhaps due to the fact that the "tri variate

reduction" model induces a linear structure between E and e', which is

the type of structure which occurs in the normal theory models for

which Pearson's statistic is designed. For n=20 and for heavy-tailed

distributions such as the Cauchy the tests based on have slightly

higher powers, but this is perhaps due to their inflated a-ievels (see

tables 5.5 and 5.6).

For the null hypothesis that t=o, and for very light-tailed

distributions such as the Pearson II (see tables 5.7 and 5.8) the

performances of the tests based on R^ are again superior to those of

the other tests. For n=20 under the OLS fit, and for both n=8 and

n=20 in the case of the LAV fit the tests R^ and R2 are conservative

(have low a-levels) for very light-tailed distributions (the Pearson

II with v=1.0). In such cases the test R4 performs the best

overall. However, due to the difficulty involved in calculating the

statistic R4 and since in practice one is not usually certain how

light tailed the underlying distribution is, a statistic such as R^

seems to be a better choice.
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For medium to heavy-tailed distributions and for testing the null

hypothesis that t=0, tables 5.9-5.12 indicate that tests based on R
n

have highly inflated a-levels, low powers or both. The best overall

*
performance in terms of both size and power is that of the test

which uses the null distribution of given in tables 5.1 and 5.2.

However, under very heavy-tailed distributions such as the Pearson VII

with v=1.25, and with the OLS fit (see table 5.9) the test K3 has

highly inflated levels. Since in practice one may have no prior

knowledge of the degree of the tail weight of the underlying

distribution it is recommended that the LAV estimation be used in

testing x=0.

The summary of our recommendations for testing for partial

correlation is as follows.

1) For the hypothesis of conditional independence, and for the

hypothesis t=0 when (E,£ ) have a very light-tailed distribution,

we recommend the use of the usual test (Rj^) based on Pearson's

partial correlation coefficient.

2) For the hypothesis x=0, and for medium to heavy-tailed

distributions we recommend the use of the statistic K* obtained

from the residuals of a LAV fit and compared to the cut-off values

given in table 5.2. For large sample sizes (n>20) we suggest

comparing to the appropriate critical values of the standard

normal distribution.
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5.5 Related Topics for Future Research

This work is complete only in the sense of fulfilling our initial

objective of studying the partial correlation problem under the simple

linear setting. However, there are several related problems which

need particular attention in future investigations. For example, one

may study the partial correlation problem when each of Y and Z are

related to a p-variate vector X by the general linear model or by some

other non-linear or functional form. For the simple linear setting

one may investigate classes of dependence alternatives other than the

"trivariate reduction" model, although our experience shows that this

by no means in an easy task as far as theory is concerned.

Another problem of interest is to study the theoretical

properties of the statistics and K* proposed for testing the null

hypothesis that t=0. For example, one may study the efficiencies of

such tests relative to the other tests discussed in this work or

investigate their empirical performances under bivariate distributions

other than the elliptically symmetric distributions considered here.
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P HOG HA a ONE
C
c
c
C A PE0G3AM TO FIND THE NOLL DISTHIBUTICN OF THE
C STATISTIC K* FfiOM THE L.A.V. FIT OF THE LINEAR
C MODELS:
C Y = X E
C Z = X + F ,

C WHERE X HAS THE N (0, 1) DISTRIBUTION AND (E,F)
C HAS THE BIVARIATE PEARSON VII DISTEIBDTICN

WITH ASSOCIATION PARAMETER RBO=0.0 AND SHAPE
C PARAMETER NU=2.0:
C

C

C

INTEGER NR, NS
REAL R(60)
REAL X(20),Y(20), Z(20), CC{20)
REAL E(20) ,S(20) ,rj (20) ,V (20)
READ W1(20), »2{20), W3 (20)
INTEGER ID (4500)
INTEGER IND(20), ITER
REAL FF(20), WT (20) , A, B, A 1 ,B 1 , A2 ,32

DOUBLE PRECISION DSEED 1 , DSEED2
C

M= 10 000
XM=FLOAT (M)

C
NR=60
NS=20
DSEED1=145645.D0
DSEEE2=123457.D0

C
DO 9 J=1,4500

9 ID(J)=0
C

DO 777 K=1,M
C
C
C

CALL GGNML (DSEED 1 , NS , S)
CALL GGTTBS (DSEED2, NR, R)
N = 20
XN=FLOAT (N)

C

NC2=XN» (XN-1. 0)/2.0
FNC2=FLOAT (NC2)

C
C
C

RHC=0.0
RHC1=SQRT (1. 0-RHO++2)
EX=-1.0

164
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DO 25 1=1,

N

X(I)=S(I)
n= 2 *i-i
12=11+1
W1 (I) = (SQBT ( (B (II) EX) -1.0))

COS (2.0^3. 1416*S(I2) )

«2 (I)= (SQBT ( (B (II) EX) -1-0) )

SIB (2. 0»3. 1416+R(I2)

)

H3 (I)=RHO^W 1 (I) +BH01^W2 (I)

Y (I)=X(I)+i»1 (I)

Z(I)=X(I) +H3 (I)

25 CCMTINDE
C

CALL DESL1 (Y ,X, N , A1 , B 1 , ITEB ,?F, IT ,IND, IFAOLT)
CALL DESL1 (Z,X,N,A2,B2, ITEB, PF, WI,IND, IFAOLT)

C
DO 17 1=1,

N

D (I)=Y (I)-A1-B1+X (I)

V (I) =Z (I) -A2-B2^X (I)

17 COMTINOE
C

c
CALL TAOHAT (N , XN, 0, V, SOMC, SSC)
TAD=SDBC/ (XH* (XB-1.0)

)

C
IF (TAO.EQ.1.0) TA0=0.999
IF (IAO.EQ.-1.0) TAD=-0.999

C

ZSTA1=SSC/ (XN^ (XN-1. 0) (XN-1 .0) )

ZETA2=1.0-TAU^TAO
ESTVAB= (2,0^ (XB-2.0) ZSTA1 + ZSIA2)/FNC2

C
ZTAa=TAD/SQBT (SSTYAH)

C
C

T=ZTA0+0.0005
IT=INT (lOOO^T)
IF (IT. LT. 1000) GO TO 111
IF (IT. GT. 4499) GO TO 222

C
ID (IT)=ID(IT) +1

GO TO 777
U
111 ID (999) =ID (999) +1

GO TO 111
222 ID (4500) =ID (4500) +1
C
c
c

111 CCNTINOE
C

ia=o
n

DO 333 J= 999,4500
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I2=IQ + ID (J)

HEITE (6,444) J,IQ
444 fOBMAT (' »,2I10)
333 CONTINDE

STOP
EHE
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C

C PHOGHAJi TWO
C
C A PRCGSAM WHICH CALCULATHS THE FSEQOEIICIES OF
C REJECTING THE NOLL HYPOTHESIS OF THE INDEPEND.
C BETWEEN THE ERROR TEHHS S AND F. THESE
C FREQOENCISS ARE CALCULATED FOR THE SEVEN
C STATISTICS UNDER CONSIDERATI CN . THIS PROGRAM
C ALSO CALCULATES THE NUMBER OF TIMES ANY TWO
C OF THESE STATISTICS REJECT THE NULL
C SIMULTANEOUSLY:
C

INTEGER NQ, NR, NS
REAL R{32), X (8) , K1 (3) , W2{8), W3{8)
REAL Y(8), Z(8), CC{8),S{3)
REAL U (8) ,V (8)
REAL El (8) , E2 (8)

REAL SS (8) ,ST (8) ,TT (3) , RET (8) , STN (8) ,PRN (8)
REAL PTN(8)
REAL WK{96)
INTEGER MAT (10, 10)
LOGICAL A,a,C,C1,C2,C3,D,E,F,G
DOUBLE PRECISION BSESD 1 , D3 EED2 , DSEED3

C
C

M=1000
XM=FLOAT (H)

C
C

NR=3 2

NQ=1
NS=8
DSEEE1= 143547. DO
DSEED2=123457.D0
DSEED3=154677.D0

C

DO 11 1=1,10
DC 22 J=l, 10

22 MAT(I,J)=0
11 CONTINUE
C

c
DO 777 K=1,M

C
c

CALL GGNML (DSESD3 , NS, S)
CALL GGNML (DSEED2, NR, R)
N=a
XN=FIOAT (N)

FNC2=XN» (XN-1- 0)/2.0
C

DELTA=1.7
C
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DO 25 1=1,

N

X(I)=S(I)
»1 (I)=R(I)
J=S-H
M2(I)=fi{J)
JJ=2+?l + I

«3 (I)=R (JJ)

El (I)=W1 (I) +DELTA + M3 (I)

S2 (I)=W2(I) +DELTA + W3 (I)

Y{I)=X{I)>E1(I)
Z (I)=X (I) +E2 (I)

25 CCNTINOE
C
C

CALL BETA (N,XN,X,I, Z, 3HAT1 , BHAT2)
DO 27 1=1,

N

0 (I)=Y(I)-BHAT1^X(I)
V (I) =Z (I)-BHAT2^X (I)

27 CONTINOS
C
C

CALL TAUHAT {N , XM ,U, V, SDUC, SSC)
TA0K=SOaC/2.0

C
TAD=SaBC/ (XN* (XN- 1.0) )

C
IP (TAU.EQ. 1,0) TA0=0.999
IP (lAD, EQ.-1.0) TAU=-0.999
ZETA1=SSC/ (XN* (XN-1.0) (XN-1.0)

)

ZETA2=1-0-TA0*TAD
VARHAT= (2. 0* (XN-2. 0) *ZETA1 + ZEIA2)/FNC2

C

3TAHK=TAD/SgHT (VARHAT)
C
C COMPARE KENDALL'S TAO CALCOLAIED ON THE RESIDOALS
C ADJOSTED BY O.L.S. ESTIMATORS TO TABLE A. 21 0?
C HOLLANDER 5 aOLFE, TO OOR SIMULATED TABLES, AND
C TO THE Z-TABLES AFTER STANDARDIZATION BY VARIANCE
C UNDER INDEPENDENCE:
C
C

IF (TAUK.EQ. 14.0) CALL GGDBS ( DSEED1 , NQ, Q)
A= (TAUK.GE. 16.0.03. (TAUK-EQ. 14-0. AND.

Q.LS.O. 826087)

)

C

B= (TAUK.GE. 16.0. OR. (TAUK. EQ. 1 4. 0. AND.
Q.LE. 0. 284697) )

C
C= (TA0K.GE-16.0.OR. (TAUK. BQ. 1 4. 0. AND.

C-LE.O. 83408)

)

IF (A) MAT (1, 1)=HAT (1, 1) +1
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C
C

C

c
c
cc
c

c

c
c
c

c

c

c

c
c
c
c

IF (E) MAT (2,,2)=MAT{2, 2) +1

IF (C) MAT (3,,3)=MAT(3, 3)H
IF (A. AND. B) MAT (1 ,2) = MAT (1 <,2) +1

IF (A. AND.C) MAT (1,3) = MAT(1,r3) + 1

IF (E. AND.C) MAT (2,3) = MAT (2,r3) 1

CCHPAGE K* TO THE SI.'IULATSD NOLL DI5TNS;
1) FRCS THE OHDINABY COBE. PROBLEM

2)

FBOa OLS BESIDOALS (NORMALITY)

3)

FB0a OLS BESIDOALS (PEABSON VII);

C1 = (STARK .GE.,1.78)
C2= (STARK .GE,, 1.98)
C3=• (STARK.GE..2.437)

IF (Cl) MAT (4,,4)=MAT(4, 4) + 1

IF (C2) MAT (5,,5)=MAT(5, 5) + 1

IF (C3) MA T(6,,6)=MAT (6, 6) + 1

IF (A. AND. Cl) MAT ( 1,4) = MAT (1,4) + 1

IF (A. AND. C2) MAT (1,5) = MAT (1,5) + 1

IF (A. AND. C3) MAT ( 1,6) = MAT ( 1 , 5 )
+ 1

IF (E. AND. Cl) MAT (2,4) = MAT (2,4) + 1

IF (E. AND. C2) MAT (2,5) =MAT (2,5) + 1

IF (E. AND. C3) MAT (2,6) = MAT (2,6) + 1

IF (C. AND. Cl) MAT (3,4) = MAT (3,4) + 1

IF (C. AND. C2) MAT (3,5) = MAT (3,5) + 1

IF (C. AND. C3) MAT (3,6) = MAT (3,6) + 1

IF (Cl .AND .C2) MAT (4,5) = MAT (4, 5) +

IF (Cl .AND .C3) MAT (4,6) = MAT (4,6) +

IF (C2.AND .C3) MAT (5,6) = MAT (5, 6) +

COMPARE PEABSON *S R WITH STODENT-T WITH N-3 DF,

CALL JACK (N,XN,D,7,SYY,SZZ,SYZ,BYZ,TN,7RN,VTN)

IF (BYZ.GE- 0- 999) BYZ=0.99

HNT=BYZ*SQRT
( (XN- 3 . 0) / ( 1 . 0-R YZ**2)

)

D= (BNT.GE .2. 015)

IF (E) MAT (7, 7)=MAT(7, 7)+1
IF (A. AND. D) HAT ( 1,7) = MAT(1, 7)+l
IF (E. AND. D) MAT (2,7) = MAT (2, 7)+1
IF (C. AND. D) HAT (3,7) = MAT (3, 7)+1
IF (Cl . AND .D) MAT (4,7) =MAT(4 ,7)+1
IF (C2 .AND .D) MAT (5,7) =MAT (5 ,7) +1
IF (C3 .AND .D) MAT (6,7) =MAT (6 ,7) +1

COMPARE TOE TBANSFCRMED FISHEB'S Z
STANDARDIZED BY ITS VARIANCE l/N-3 TO Z 0.05;



n

n

^
n

n

170

ZTN=SQRT
( (XN-3.0) ) ^TH

E= (ZTN.GE. 1. 645)

IF (E) MAT (8, 8) =MAT (8, 8) + 1

IF (A. AND.E) MAT ( 1 , 8) = MAT(1

,

8) +1
IF (B. AND. E) HAT (2, 8) = MAT(2, 8) +1
IF (C. AND. E) MAT (3, 8) = MAT(3, 8) +1
IF (Cl .AND.E) MAT (4 »8) = MAT (4 ,8)+1
IF (C2 .AND.E) MAT (5 ,8) = MAT (5 ,8)+1
IF (C3 .AND. E) MAT (6 .8) = HAT (6 ,8) +1
IF (£. AND.E) MAT (7, 8) = MAT (7, 8) +1

C
C

C OSJ THE JACKKNIPE ESTIHATORS OF THE VABIANCES CP
C OP PEARSON'S a, AND FISHER'S Z, AND COHPAHE TO
C Z_0.05:
C
C

SDHN =SQET (VHN/XN)
SDTN =SQRT (VTN/XN)
RNJACK=3yZ/SDaN
TNJACK=TN/SDTN

C
F= (BNJACK.GE. 1.645)
G= (INJACK. GS. 1.645)

C

IP (F) MAT (9,9)=«AT{9, 9) +1
IF (G) HAT {10,10)=MAT{10,10) +1
IF (A.AND.F) HAT (1 ,9) = HAT (1 ,9) +1
IP (E.AND.P) BAT (2,9) = MAT{2,9) +1
IF (C.AND.F) MAT (3,9) = MAT (3, 9) +1
IP (Cl. AND. F) MAT{4,9)=MAT(4,9) +1
IF (C2.AND.F) MAT (5,9) =MAT (5,9) +1
IF (C3-AND.F) MAT(6,9) =MAT(6,9) +1
IF (C.AND.F) MAT (7,9) = MAT(7,9) +1
IP (E.AND.P) MAT (8,9) =MAT (8, 9) +1
IF (A.AND.G) MAT (1,10)=MAT(1 ,10) +1
IP (B.AND.G) MAT (2, 10) =MAT (2, 10) + 1

IF (C.AND.G) MAT(3,10)=MAT(3,10) + 1

IF (Cl. AND, G) MAT (4, 10) =MAT (4, 10) + 1

IF (C2.AND.G) MAT (5, 10)=MAT (5, 10) +1
IF (C3.AND.G) MAT (6, 10)=MAT (6, 10) +1
IF (D.AND.G) MAT(7,10)=MAT(7,10)+1
IF (E.AND.G) MAT (8, 10) =MAT (8 , 10) + 1

IF (F.AND.G) MAI (9,10) =MAT(9,10) +1

CCNTINDE

DO 888 1=1,10
WRITE (6,123) (MAT(I,J), J=1,10)

123 FCHMAT ('-',1018)
888 CCNTINUE
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C

c

c
c

c
c

c

c

THIS SOBHODTINE CALCDLATES THE LEAST ABSOLUTE
VALUE (LAV) PABAaETEH BSTiaATES OF THE SI3PLE
LINEAB aODEL (JCSVAHGEH AHD SPOSITC, 1983);

SUBBOUTINE ONE

SUBSCUTINE DESLl (I ,X , N , A, B , ITEE, FF ,»T , INC , IF AULT)

INTEGEB IHD (N) , ITEB
HEAL X{20), Y{20), FF(20), WT(20), A, E,A1,A2,B1
REAL B2
DATA TOL/1-OE-6/
XN=FLOAT (N)

FIND ESTIHATES OF A AND B

I?AULT=0
SY=0.0
A 1=X (1)

DO 10 1=1,

N

IF (X(I)-NE.AI) IFA0LT=1
SY=SY+Y (I)

0 CONTINUE
B=0.
A=SS/XN
IF (IFAULT.EQ.O) RETURN
ITEE=0
IEESA=1
ISES£=0
DEV=ABS (Y (1)-A)
DO 20 J=2,N

IF (ABS (Y (J)-A) .GE. DEV) GO TO 20
DEV=ABS (Y (J)-A)
IBESA=J

0 CONTINUE

HECCHD X AND Y COERESP. TO THE BIN. ABS. DEVIATION

0 J=IBESA
XJ=X (J)

YJ=Y (J)

1=1
a=i
K=N
THL=0.
TBD=0.

SEPEHATE SLOPE VALUES > B FRCa THOSE < 3

C

40 XI J= (X (l)-x (J) )

IF (XIJ.EQ.O.) GO TO 60
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FI= (Y (I)-YJ)/XIJ
IF (XIJ.LT.O.) XIJ=-XIJ
IF (FI.GT.B) GO TO 50
FF {B) = FI
WT {f!)=XIJ
IWD (M)=I
THl=TiL+XIJ
M=H+ 1

GO TC 60
50 FF{K)=FI

HT (K)=XIJ
IHD (K)=I
Tiio=aau4-xiJ
K=K-1

60 IF (I.EQ.N) GO TO 70
1= 1+1
GO TC 40

C
C SET THE NEH B VALOE = HEIGHTED BECIAH SLOPE
C

70 ASCM= (TWL+TH0)/2.
IF (TWL-GE.TaU) GO TO 130
M=B-1

80 K=K+1
M=M+1
I=K

90 FNES=FF (I)

INEH=I
100 I? (I.EQ.N) GO TO 110

1 = 1+1
IE {FF (I) .LT.FNEa) GO TO 90
GO TC 100

110 T«I=TliL +aT (INEa)
IF (laL.GE.ASOM) GO TO 120
FF (IHEH)=FF (K)

WT (INEH) =«T (K)

ISE (IHEa)=IND (K)

GO TC 80
120 BNEW=FNEW

JNES=IHD (ISE»)
GO TC 180

130 M=H-1
i=a

140 ENEa=FF(I)
INES=I

150 IF (I.EQ. 1) GO TO 160
1=1-1
IF (FF (I) .GT.FNEH) GO TO 140
GO TC 150

160 TWD=T«D+MT (INEW)
IF (TiO.GT. ASOM) GO TO 170
FF (IHE»)=FF (B)

WT (INEW)=WT (B)

IND (INEW) =IND (M)
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GO TC 130
170 BNZ»=PNEH

JNE«=IHD (laEH)

FIND NEW INTEBCEPT 7ALDE
CHANGE ITEBATICN COUNT

80 ITEE=ITER+1
A=YJ-BNEW*XJ

TEST ONE FOE SOLUTION:
COflPAHE DIFFEEENCE IN B VALDES TO TOLEBANCE
LEVEL

IF (ABS (B-BNEi) .LE.TOL) GO TO 190
B=ENEH

TEST TWO FOB SOLUTION:
CHECK FOB HEPITITION IN INDEX PAITEBN

IF {IBESB. SQ. JNEW) GO TO 190
IRESE=IBESA
IRESA=JNEW
GO TC 30

190 RETURN
END
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C
C SOBHOUTINE THO
C
C THIS SOBBODTINE CALCULATES KENDALL'S TAU. THE
C NUaBERS OBTAINED THROUGH THIS SUBBCUTINE ABE
C USED IN THE SAIN PROGRAM TO FIND K»:
C

SUBROUTINE TAUHAT (N , XN, I, Z , SU MC, SSC)
DIMENSION Y(8), Z (8) ,CC (8)
SDI!!C=0.0
SSC=0.0

C

DO 1 1=1,

N

COUNT=0.0
DC 2 J=1,N

IIJ=Y(I)-Y{J)
ZIJ=Z (I)-Z (J)

IP
{ (YIJ*ZIJ) .GT. 0.0) COUNT=COUNT+1.0

IF ( (YIJ*ZIJ) ,LT. 0. 0) CCONT=CCUNT-1.

0

2 CCNTINUE
CC (I)=COUNT
SOMC=SUaC+CC (I)

C

1 CCNTINUE
C

CBAE=SUMC/XN
C

DO 3 1=1,

N

SSC=SSC+ (CC {I)-CBAS) (CC (I) -CBAR)

REIUBN
END



n
n
n
n

176

SDBRODTINE THREE

C

5

6

C

C

C

SDBBCOTINE JACK
TN,VHN,VTN)

DIMENSION Y (20) ,

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

(N,XN, Y,Z,SIY,SZZ,SYZ,RYZ,

Z (20)
CXN,DY (20) ,DZ (20) ,DSYY,DSZZ
DVRN,DVTN,SS(20) ,ST(2Q)
STN(20) ,PRN (20) ,PTN (20) ,DTN
SUM3,SOM4,S0aPEN,SUaPTN
BARY, BARZ
DSYZ,DRYZ,TT(20) ,BST(20)
SDBUSUM2,SAVEY,SA7EZ,S2, T2
SUMY, SUMZ, YEAR, ZB AR

SUMY=0,D0
suaz=o. DO
DSYY=0. DO
DSZZ=0.D0
DSYZ=0.D0
SUM3=0. DO
SUM4=0. DO
SUHPBN=0.D0
SUI!ITN=0.D0
DXN=XN
DC 5 1=1 ^N
DY(I)=Y(I)
DZ(I)=Z(I)
SOHY=SUaY+DY (I)

SUMZ=SUMZ+DZ (I)

CONTINUE
YBAB=SUMY/DXN
ZBAfi=SUHZ/DXN

DC 6 1=1,

N

DSYY=DSYY-»- (DY (I)-YBAH) (DY (I) -YEAR)
DSZZ=DSZZ+ (DZ (I)-ZBAR) (DZ (I) -ZEAR)
DSYZ=DSYZ+ (DY (I) -YBAR) (DZ (I) -ZEAR)
CONTINUE

DRYZ=DSYZ/DSQBT (DSYY»DSZZ)
DTN=0.5D0* (DLOG (l.DO+DRYZ) -DLOG (1 .CO-DBYZ) )

HYZ=DRYZ

DO 10 1=1,

N

SA7EY=DY (I)

S2=SA7EY
DY (I) =0.D0
SA7EZ=DZ (I)

T2=SA7EZ
DZ (I)=0.D0
SUMl=O.DO
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SDH2=0.D0
C

DO n J=1,N
SDMl=SOJn + DY (J)

SDM2=SOM2+DZ (J)

11 CCSTINDE
C

DY (I)=SAVEY
DZ {I)=SAVEZ

C
BABY=S0M1/ {DXN-1.D0)
BABZ=SOfl2/ (DXN-1.D0)
SS (I)=DSIY- ( (DXa-I.DO) /DXN) (BABY-S2) (EARY-S2)
TT (I) = DSZZ- ( (DXN-1.DO) /DXN) (BARZ-T2) * (BARZ-T2)
ST (I)=DSYZ- { (DXN-l.DO) /DXN) (BABY-S2) (BARZ-T2)
RST (I) =ST (I) /DSQBT (SS (I) *TT (I) )

STN (I)=0.5D0* (DLOG (1.DO+HST (I) )-DLCG (1.DO-
BST(I)))

PEN (I) = DXN^DHYZ- (DXN-1 .DO) RST (I)

PTN (I) =DXN*DTN- (DXN-1. DO) *STN (I)

SUMPEN=SONPRll+PHN (I)

SOHPTN=SDMPTN + PTN (I)

C
10 CONTINUE
C

PENEAR=SDBPRN/DXN
PTNEAR=SUMPTN/DXN
DO 12 J=1,N
SDM3=S0I13+ (PHN (J) -PRNB AR) (PEN (J) -PRNBAR)
SDf!4=S0M4+ (PTN (J) -PTNB AR) (PIN (J) -PTNBAR)

12 CONTINUE
DVRN=SUM3/ (DXN-1. DO)
DVTN=SUa4/ (DXN-1. DO)

C

TN=DTN
VBN=DVRN
VTN=DVTN
RETURN
END

C
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